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Introduction

Motivation

Let Y2 denote potential /counterfactual outcome that would have
been observed under treatment A = a

» causal inference ~ estimating features of distribution of Y?

Very common to quantify effects with means, e.g., ATE = mean
outcome if all versus none were treated

E(Y! - Y9

Certainly a useful summary — but can miss important differences!
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Introduction

Motivating application

What is effect on CD4 of combination antiretroviral therapy versus
zidovudine alone in patients with HIV?

» mean effect > median effect

» how is combination therapy affecting distribution?

3/45



Introduction

Why do we care?

Knowing counterfactual densities can be very useful

» if densities differ at all, there is some treatment effect

Skew = some subjects have extreme responses

» could try to find who they are, why responses are extreme

Multimodality = may exist underlying heterogeneous subgroups

» could be useful for optimizing policy, understanding variation

Density shape can inform hypotheses about treatment mechanism
» maybe trt reduces variance, or drives up negative outcomes

» can help enhance future treatments, motivate new ones
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Introduction

Work on causal CDF estimation

Large literature on distributional effects via quantiles or CDFs

» Abadie (‘02), Melly (‘05), Chernozhukov et al. (‘05, ‘13),
Firpo (‘07), Rothe (‘10), Frolich & Melly (‘13), Diaz (‘'17)

But challenges & methods are very different for densities
> P(Y <y)=E{IL(Y < y)} so reduces to mean estimation
» CDF yields unbiased estimators, \/n rates; density requires
bias/var trade-off (CDF pathwise differentiable, density not)
> CDFs easier to estimate, but densities easier to interpret

CDFs & densities should really be viewed as complementary
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Introduction

Work on causal density estimation

Counterfactual density estimation literature is much more sparse

» Dinardo et al. ('96) - IPW kernel estimator

» Robins & Rotnitzky (‘01) - DR kernel estimator

» vdL & Dudoit (‘03), Rubin & vdL (‘06) - CV w/KL & L5
» Westling & Carone ('20) - monotone densities

» Kim et al. (‘18) - DR kernel estimator & L; distance

None uses semiparametric approach
P i.e., where density is approximated with d-dimensional model
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Introduction

Punchline

Our work aims to fill this gap in the literature

» also give data-driven model selection & aggregation tools

Separate contribution:

P generic density-based effects, which characterize the distance
between counterfactual densities, using a generalized notion of
distance that includes f-divergences as well as L, norms
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Introduction

Setup

Given iid sample of Z = (X, A, Y) ~ P where
> X € RY = covariates, A € {0,1} = trt, Y € R = outcome

Some notation:
» 7,(x) =P(A=a| X = x) = propensity score
> na(y [ x) = a%]P(Y <y|X = x,A=a) = outcome density

and covariate-adjusted density
paly) = [y %) dP(x)

= density of Y under consistency/positivity /exchangeability
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Target 1: Density Functions
Target 2: Density Effects
Model Selection & Aggregation

Target Parameters

Overview of target parameters

We consider two kinds of target parameters:

» approximation of the counterfactual density, defined via a
projection in some distributional distance

P density-based causal effect, measuring difference between
counterfactual densities in general f- or other divergences

Density effects give a more nuanced picture of how counterfactual
densities differ, compared to the usual ATE

We also show how these two targets can be adapted for mode/
selection & aggregation
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Target 1: Density Functions
Target 2: Density Effects
Model Selection & Aggregation

Target Parameters

Target 1: density functions
First: approximations of p,(y) based on model {g(y;3): 8 € R9}
> Exponential family: for basis b(y) = {b1(y), ..., ba(y)}", let
g(y;B) = exp {BTb(y) - C(B)}

where C(3) = log [ exp{"b(y)} dy so that [ g(y;8) dy =1
» Truncated series: for base density g(y) can use linear model

g(yiB) = aly +ZBJ

e.g., for Y €[0,1] take q(y) = 1 and b;(y) = V2 cos(mjy)
» Gaussian mixture: g(y;3) = Zk 1 @) (Ui) o <%>
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Target 1: Density Functions
Target 2: Density Effects
Model Selection & Aggregation

Target Parameters

Projection parameter

We do not assume our model is correct! Instead just use it for
defining approximations:

fo = argmin Dy (pa(y),g(y; 5))
,BEIRP

where Dr is a distributional distance

Di(p.a) = [ 7(p(r). a0 alr) dy

for some given discrepancy function f : R> - R

> generalization of f-divergence that includes L5 distances
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Target 1: Density Functions
Target 2: Density Effects
Model Selection & Aggregation

Target Parameters

Parameter interpretation

Mathematically g(y; 5o) is the best-fitting model of this form
» if model is correct, g(y; fo) = pa(y) is true density
» under misspecification, g(y; 5p) is just best approximation

Actually assuming pa(y) = g(y; Bo) would be semiparametric

» all our results are formally nonparametric

Similar to best linear approximation in regression (White ‘80)

» long history in stats (Huber, Beran, White, Buja et al., etc.)
& causal (vdL, Cuellar & Kennedy, Semenova & Chernoz.)
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Target 1: Density Functions
Target 2: Density Effects
Model Selection & Aggregation

Target Parameters

Statistical epistemology

Can imagine at least 3 approaches here:
1. modelist: assumes finite-dim model is the correct one
2. model-agnostic: uses finite-dim model, allows it to be wrong

3. anti-modelist: model's wrong, & don’t want approximation

Each approach has trade-offs:
» modelist will do well if correct, otherwise biased

P anti-modelist doesn't need to worry about bias as much, but
has to live with larger errors due to more ambitious target

» model-agnostic: if model is correct, can do nearly as well as
modelist, otherwise inference still valid for approximation
— but choosing model/distance be a challenge
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Target 1: Density Functions
Target 2: Density Effects
Model Selection & Aggregation

Target Parameters

Distances

> 13 f(p,q) = &2 = Dy(p.q) = lIp - ql3

» KL: f(p,q) = glog (g) = Dr(p,q) = KL(p, q)

> x* f(p,q) = (p/a—1)*> = Ds(p,q) = X*(p,q)

> Hellinger: f(p,q) = (v/p/q —1)> = Df(p,q) = H*(p.q)
> TV: f(p,q) = 5% — Ds(p,q) =TV(p.q) = 3llp— gl

> TV*: f(p, q)%q_q) for v+ smooth approximation of | - |
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Introduction

Target Parameters

Optimality & Estimation/Inference
lllustration & Discussion

Target 1: Density Functions
Target 2: Density Effects
Model Selection & Aggregation

Projection examples
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Target 1: Density Functions
Target 2: Density Effects
Model Selection & Aggregation

Target Parameters

Moment condition

For smooth distances, 5y can be defined with moment condition
» links projection parameters to integral functionals of p,(y)
Proposition

Assume smoothness conditions and let f)(q1, g2) = a%zf(ql, q2).
Then the projection parameter

Bo = argmin Dy (pa(y)vg(y: 5))
BERP

is a solution to the moment condition m(3) = 0, where

og(y; B)

m(@)= [ L2 {#(p.0).eli D) + £ 0% (paly) £ 9)) } d

y.

B
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Target 1: Density Functions
Target 2: Density Effects
Model Selection & Aggregation

Target Parameters

Moment condition examples

If Df = L3, Y €0,1], and g(y; 3) = 1+ BTb(y) then

ﬁ:]E{b(Ya)}

if bis seriesw/ [ bj(y) dy =0 & [ bj(y)bk(y) dy = 1(j = k)

> closed form expression! just mean of transformed outcome

If Df = KL and g(y; 5) o< exp{8"b(y)} then

() = - { L oge(vai8) | = [ 60 {&tri5) - pulo) o
» matches moments of b under g(y; 3) and p,(y)
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Target 1: Density Functions
Target 2: Density Effects
Model Selection & Aggregation

Target Parameters

Target 2: density effects

In addition to density approximations we consider density effects

v = Dr(p(y). () = [ 7(p1(3): o)) () o

Note: here we do not require an approximating model!

Give more nuanced picture of how counterfactual densities differ,
compared to the usual ATE
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Target 1: Density Functions
Target 2: Density Effects
Model Selection & Aggregation

Target Parameters

Model selection & aggregation

In practice may want to use data to choose among many models
» need to adapt CV/selection a la van der Laan & Dudoit (‘'03)

Given set of estimators {gk(y) : k = 1,..., K} can define risk
R(&) = Dr (Paly), &(»))

and oracle aggregator as g(y) = >, Bok8«(y) where
K
Bo = argmin Dr ( pa(y), Y Bk8«(y)
peB k=1

for some appropriate selection set, e.g., for convex aggregation the
simplex B = {(B1,..., Bk) € RX : B > 0,3, Bk =1}
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Efficiency Bounds
Estimators

Optimality & Estimation/Inference el 6fF ConvEEEE

Punchline

We give a crucial von Mises (i.e., distributional Taylor) expansion
for generic density functionals, which yields ElFs

» so nonparametric efficiency bounds & local minimax lower bds

> also estimators that can be optimally efficient

Throughout we reference linear map T — ¢,(T;P) defined as

1(A=a) B - B
Aaxﬂ*{Tqu|XM¢*@}HMT\Xkaﬂ—EwﬂTL&Aian

which outputs EIF for E{IE(T | X, A= a)}. In our examples, T = h(Y)
will be non-trivial function of outcome Y, depending on model /distance
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Efficiency Bounds
Estimators

Optimality & Estimation/Inference el 6fF ConvEEEE

Master lemma

Lemma

Let ¢ = (P) = [ h(pa(y)) dy for some twice continuously
differentiable funct:on h. Then 1) satisfies the von Mises expansion

v(®) = (@) = [ 6. (H(pu(1):P) d(F - P)+ RoP.P)

where, for p%(y) between p,(y) and p,(y), R:(IP,IP) is given by

//h/ { X; 1}{na(y|X)—na(yX)} dy dP(x)

3 [HEOEW - po)} o,
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Efficiency Bounds
Estimators

Optimality & Estimation/Inference el 6fF ConvEEEE

Density functions

Theorem

Let f be 2x differentiable & let f/(q1, q2) = %f(ql, Q) &

(a1, @) = 5oz Fa1, a2). The EIF for m(8) is 6. (7¢(Y: 8))
where

VD 1 (mar). 80 ) + 8030184 (alr )i ) }

The EIFs for By and g(y; Bo) are

a’gff)lm (vtvim) |, ﬁga(g:f) 027(6/3) s (v(v:9) |

ve(y; B) =

B=Po
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Efficiency Bounds
Estimators

Optimality & Estimation/Inference el 6fF ConvEEEE

Density functions: L, & KL

Corollary

For L3 and KL divergence the quantity v¢ reduces to

og(y; H
i) = _2% if Df = L%
YelYs _%ﬁ(y:ﬁ) if Df = KL.

Further, if either
1. Df = L2 and g(y; B) = q(y) + B™b(y) is truncated series

2. Dr = KL and g(y; B) = exp{B8Tb(y) — C(B)} is exp fam
then EIF for m(f) is proportional to

@a(b(Y))
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Efficiency Bounds
Estimators

Optimality & Estimation/Inference el 6fF ConvEEEE

Density effects

Theorem

In an unrestricted nonparametric model, the efficient influence
function for the density effect r = [ f (p1(y), po(y)) po(y) dy is

given by
o1 <)\1( Y)) + 9o ()\0( Y))

where

M(y) = po(y)fi (pl(y), po(y))

Mo(y) = £ (pr(y), po(y)) + o) (P1(¥): Poly)).
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Efficiency Bounds
Estimators

Optimality & Estimation/Inference el 6fF ConvEEEE

Density effects: L, & KL

Corollary

If Df = L%, then the efficient influence function for 1r is

2(¢1 — ¢0)<P1(Y) - Po(y)>-

If D = KL, then the efficient influence function for 1¢ is

w (= ()~ ().
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Efficiency Bounds
Estimators

Optimality & Estimation/Inference el 6fF ConvEEE:

Proposed density estimator

A plug-in estimator is given by the solution to

w0 = [ OO (1 (500).60:9) + 80 )8 (30). 80 ) o

This will be suboptimal in general. Our proposed estimator solves
R(B) + Pn{@a(36(Y: 8)) } = op(1/v/7)

where ¢,(T) = ¢.(T; P) is estimated EIF

P i.e., one-step bias-corrected estimators, which take the plug-in
& add estimated bias, i.e., add average estimated IF
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Efficiency Bounds
Estimators

Optimality & Estimation/Inference el 6fF ConvEEE:

Proposed estimator: L, case

Proposition

If D = L3, Y €[0,1], and g(y; B) = 1 + BTb(y) then plug-in is

B = Po{fia(X; b)},

where [i,(x; b) is estimate of p,(x; b) = E{b(Y) | X = x,A = a).
In contrast, our proposed one-step estimator is given by

-, [1A=2

5=, |22 {60 = i)} + 7t )
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Efficiency Bounds
Estimators

Optimality & Estimation/Inference el 6fF ConvEEE:

Proposed estimator: KL case

Proposition

If Dr = KL and g(y; 8) = exp{8"b(y) — C(5)}, then plug-in solves
[ [60) = Pata(x; )} exp {5750} dy =0

where [i5(x; b) is estimate of pu,(x; b) = E{b(Y) | X = x, A = a).
In contrast, our proposed one-step estimator solves

[ (b) -,

1(;8‘(;)"”) {b(Y) — a(X; b)} + fa(X; b)D exp {BTb(y)} dy =0
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Efficiency Bounds
Estimators

Optimality & Estimation/Inference el 6fF ConvEEE:

Rates of convergence

Theorem

Let n = (ma,ma), ©(Z; B,n) = m(Bin) + da(v¢(Y; B),m). Assume:
1. vf and 1/7, are bounded above, & s is differentiable in
pa(y), with derivative bounded above by §.

2. The function class {¢(z; 8,m) : B € RP} is Donsker in [3.
3. Consistency, i.e., B — Bo = op(1) and ||7j — no|| = op(1).
4. Map B — P{p(Z;B8,n)} is differentiable, with derivative

matrix aﬂIP{cp(Z B,1)}Ha=s = V(bo, )£> V' (5o, m0)-
Then

B— o = —V(Bo,m0) (B~ P) {0a(r1(Y: 50)) }

~ N - 1
L op (nwa — all17s = mall + 8118 — pall? + o (
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Efficiency Bounds
Estimators

Optimality & Estimation/Inference el 6fF ConvEEE:

Rates of convergence

Theorem shows [ attains faster rates than nuisance estimators 7,
& can be efficient under weak nonparametric conditions

> 1st condition ensures the IF is not too complex
» 2nd merely requires consistency of (B, 7) at any rate

» 3rd requires some smoothness in 3, to allow delta method

Rate is second-order in nuisance estimation error

» ~¢ may not depend on p,(y), so derivative is zero & 6 =0
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Efficiency Bounds
Estimators

Optimality & Estimation/Inference el 6fF ConvEEE:

Proposed effect estimator

The density effect estimators we propose are defined as
9t = [ (5 20))3o(x) dy P {31 () + G0 (Ro(V)) }

which can again be viewed as one-step bias-corrected estimators,
w/plug-in bias estimated via an average of EIF

Note: rather than estimating the density 1, & integrating over its

y argument, one could instead regress A\, on X for the integral
terms in the EIF
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Efficiency Bounds
Estimators

Optimality & Estimation/Inference el 6fF ConvEEE:

Effect estimator: L,

Proposition
If Df = L3 then proposed density effect estimator is

2P0 (255 ({5 =m0} = [ {(B15) = 500}ty 10 o]
+ [ B0 -mm e 10 -0 10} &) - [{80)- 50} o.
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Efficiency Bounds
Estimators

Optimality & Estimation/Inference Triis 6 CEmEEEEe

Rates of convergence

Theorem

Assume A\, and 1/, are bounded above, and \, is differentiable in
pa(y), with derivative bounded above by 6,. Then

Br =6 = @ = P) {61 (M(¥)) + 60 (No(¥)) }
+ Op <i (H%a — a||[|7a — mall + 8al|Pa — pa||2) T op <\%)>

a=0
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Efficiency Bounds
Estimators

Optimality & Estimation/Inference Triis 6 CEmEEEEe

Inference

There is a special distinction in density effect estimation. Results
suggest 95% Cls of the form

r £ 1.96\/60\\/ {81(2a(1) + do(Re(¥)) } /r

These intervals are asymptotically valid as usual when p; # pg, but
not when p; = po, since then IF reduces to zero

» sample avg term no longer dominant

» similar to degenerate U-statistics

Simple fix is to use the interval ¢ & Zoj2(s vV 1/4/n) where
s = \/&Tv{qgl(xl(Y)) + do(No(Y))}/n: valid but conservative
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Efficiency Bounds
Estimators

Optimality & Estimation/Inference Triis 6 CEmEEEEe

Model selection & aggregation

Consider linear aggregation, where our methods are
straightforward. (Note f-divergences may not be well-defined.)

Our proposed approach is:

Step 1. Randomly split sample into training set DY and test set D}

Step 2. In training set DY, estimate models gx(y) = g(y; k)

Step 3. In test set D}, estimate projection of linear span ofgk onto
basis to compute aggregated estimator g(y) = >, 0x8k(y).

Step 4. Reverse roles of DO and D} and avg two resulting aggregates.
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Efficiency Bounds
Estimators

Optimality & Estimation/Inference Triis 6 CEmEEEEe

Model selection & aggregation

For model selection & convex aggregation, can estimate the
distance between p, & each of k candidates, & pick minimizer

For example, with L3 can use

o~

Brlg) = [ (30— &))" dy +2P0 {3 (5ulY) ~ (1)) }.

or pseudo-L3 risk

Ri(g) = 2P, [“{‘(;)’ {gkm - [ ety 1%) dy}

+ [yt 1) dy] + [ a2 o

since L% is this plus a term fpg that does not depend on gi
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Wrapping up

lllustration & Discussion

Data

We apply methods to study effects of combination antiretroviral
therapy among n = 2319 patients with HIV

» Y = CD4 count at 96 weeks
» A = combination therapy vs zidovudine (& observed outcome)

> X = age, weight, Karnofsky score, race, gender, hemophilia,
sexual orientation, drug use, symptoms, previous trt history

Data are freely available in speff2trial R package
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Wrapping up

lllustration & Discussion

Methods

We used 5-fold cross-fitting with random forests

» 1), constructed via RF regression: %K (%) ~ X, A

Targets:
» [, distance between p; and pg
» [, projections onto linear series with cosine basis
» [, risk for k=1,...,15
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Introduction
Target Parameters

Optimality & Estimation/Inference ORI 79
lllustration & Discussion
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Estimate

Introduction

Target Parameters

Optimality & Estimation/Inference
llustration & Discussion

Counterfactual density (& pointwise CI)

Wrapping up
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Wrapping up

lllustration & Discussion

Interpretation

The CD4 densities differ more substantially in the lowest CD4
range (e.g., 0-200)

» combination therapy may have increased CD4 count most for
high-risk patients w/ lowest counts under control (zidovudine)
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Wrapping up

lllustration & Discussion

R code

# install npcausal package
install.packages("devtools"); library(devtools)
install_github("ehkennedy/npcausal"); library(npcausal)

# load data
library(speff2trial); data(ACTG175); dat <- ACTG175[,c(2:17,19,21,23)]
x <- dat[,!(colnames(dat) %in% c("treat","cd496"))]

# create treatment*missing indicator
al <- dat$treat*(!is.na(dat$cd496)); a0 <- (1-dat$treat)*(!is.na(dat$cd496))
a <- al; ala0==0 & a1==0] <- -1; y <- dat$cd496; y[is.na(dat$cd496)] <- 0

# estimate pseudo-12 risk for k=1:15
cv.cdensity(y,a,x, kmax=15, gridlen=50,nsplits=5)

# estimate densities at k=4
res <- cdensity(y,a,x, kmax=4, kforplot=c(4,4), gridlen=50,nsplits=5,ylim=c(0,800))
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Wrapping up

lllustration & Discussion

Summary

We proposed methods for estimating counterfactual densities and
corresponding distances and other functionals

> gave efficiency bounds & flexible optimal estimators for wide
class of models & projection distances, & for new effects that
quantify treatment impacts on the density scale

Also gave methods for data-driven model selection and aggregation

> illustrated in application studying effects of antiretroviral
therapy on CD4 count
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Wrapping up

lllustration & Discussion

Discussion points

Lots of avenues for future work

| 2

>
>
>

nonparametric version of the problem
non-discrete treatments (where A is e.g., a continuous dose)
computational aspects (require solving messy estimating eqs)

time-varying trts, instrumental variables, conditional effects,
density-optimal trt regimes, mediation, sensitivity analysis...
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Wrapping up

lllustration & Discussion

Paper is on arxiv:
https://arxiv.org/pdf/2102.12034.pdf

Feel free to email with any questions:
edward@stat.cmu.edu

Thank you!

45/45



Introduction
Target Parameters
Optimality & Estimation/Inference

lllustration & Discussion

«O>r «F»r <

it
v
a
it
v

LY
45/45



Wrapping up

lllustration & Discussion
Corollary

The quantity f(pa(y),g(y: B)) +g(y; B)fé(Pa(y),g(y: 6)) in the
integrand of the moment condition equals

2{g(y: B) — pa(y)} if Df = L3
-0 (Y)) if Dy = KL
{ } if Df = %2

pa(y) . _

'\ i) i D = H°

—vi{pay) — g(y:B)} /2 ifDf =TV
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Wrapping up

lllustration & Discussion

In a slight abuse of notation we define

2
i el = [ { [ty 10 =ty 1) dy} dP(x)
< / (aly | %) — maly | )} dP(y. x)
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