Semiparametric Counterfactual Density Estimation

Edward Kennedy \& Siva Balakrishnan \& Larry Wasserman

Department of Statistics \& Data Science
Carnegie Mellon University

IU Biostatistics, 19 Mar 2021

Motivation

Let Y^{a} denote potential/counterfactual outcome that would have been observed under treatment $A=a$

- causal inference \approx estimating features of distribution of Y^{a}

Very common to quantify effects with means, e.g., ATE $=$ mean outcome if all versus none were treated

$$
\mathbb{E}\left(Y^{1}-Y^{0}\right)
$$

Certainly a useful summary - but can miss important differences!

Motivating application

What is effect on CD4 of combination antiretroviral therapy versus zidovudine alone in patients with HIV?

- mean effect > median effect
- how is combination therapy affecting distribution?

Why do we care?

Knowing counterfactual densities can be very useful

- if densities differ at all, there is some treatment effect

Skew \Longrightarrow some subjects have extreme responses

- could try to find who they are, why responses are extreme

Multimodality \Longrightarrow may exist underlying heterogeneous subgroups

- could be useful for optimizing policy, understanding variation

Density shape can inform hypotheses about treatment mechanism

- maybe trt reduces variance, or drives up negative outcomes
- can help enhance future treatments, motivate new ones

Work on causal CDF estimation

Large literature on distributional effects via quantiles or CDFs

- Abadie ('02), Melly ('05), Chernozhukov et al. ('05, ‘13), Firpo ('07), Rothe ('10), Frolich \& Melly ('13), Diaz ('17)

But challenges \& methods are very different for densities

- $\mathbb{P}(Y \leq y)=\mathbb{E}\{\mathbb{1}(Y \leq y)\}$ so reduces to mean estimation
- CDF yields unbiased estimators, \sqrt{n} rates; density requires bias/var trade-off (CDF pathwise differentiable, density not)
- CDFs easier to estimate, but densities easier to interpret

CDFs \& densities should really be viewed as complementary

Work on causal density estimation

Counterfactual density estimation literature is much more sparse

- Dinardo et al. ('96) - IPW kernel estimator
- Robins \& Rotnitzky ('01) - DR kernel estimator
- vdL \& Dudoit ('03), Rubin \& vdL ('06) - CV w/KL \& L_{2}
- Westling \& Carone ('20) - monotone densities
- Kim et al. ('18) - DR kernel estimator \& L_{1} distance

None uses semiparametric approach

- i.e., where density is approximated with d-dimensional model

Punchline

Our work aims to fill this gap in the literature

- also give data-driven model selection \& aggregation tools

Separate contribution:

- generic density-based effects, which characterize the distance between counterfactual densities, using a generalized notion of distance that includes f-divergences as well as L_{p} norms

Setup

Given iid sample of $Z=(X, A, Y) \sim \mathbb{P}$ where

- $X \in \mathbb{R}^{d}=$ covariates, $A \in\{0,1\}=$ trt, $Y \in \mathbb{R}=$ outcome

Some notation:

- $\pi_{a}(x)=\mathbb{P}(A=a \mid X=x)=$ propensity score
- $\eta_{a}(y \mid x)=\frac{\partial}{\partial y} \mathbb{P}(Y \leq y \mid X=x, A=a)=$ outcome density
and covariate-adjusted density

$$
p_{a}(y)=\int \eta_{a}(y \mid x) d \mathbb{P}(x)
$$

$=$ density of Y^{a} under consistency/positivity/exchangeability

Overview of target parameters

We consider two kinds of target parameters:

- approximation of the counterfactual density, defined via a projection in some distributional distance
- density-based causal effect, measuring difference between counterfactual densities in general f - or other divergences

Density effects give a more nuanced picture of how counterfactual densities differ, compared to the usual ATE

We also show how these two targets can be adapted for model selection \& aggregation

Target 1: density functions

First: approximations of $p_{a}(y)$ based on model $\left\{g(y ; \beta): \beta \in \mathbb{R}^{d}\right\}$

- Exponential family: for basis $b(y)=\left\{b_{1}(y), \ldots, b_{d}(y)\right\}^{\mathrm{T}}$, let

$$
g(y ; \beta)=\exp \left\{\beta^{\mathrm{T}} b(y)-C(\beta)\right\}
$$

where $C(\beta)=\log \int \exp \left\{\beta^{\mathrm{T}} b(y)\right\} d y$ so that $\int g(y ; \beta) d y=1$

- Truncated series: for base density $q(y)$ can use linear model

$$
g(y ; \beta)=q(y)+\sum_{j=1}^{d} \beta_{j} b_{j}(y)
$$

e.g., for $Y \in[0,1]$ take $q(y)=1$ and $b_{j}(y)=\sqrt{2} \cos (\pi j y)$

- Gaussian mixture: $g(y ; \beta)=\sum_{j=1}^{k} \varpi_{j}\left(\frac{1}{\sigma_{j}}\right) \phi\left(\frac{y-\mu_{j}}{\sigma_{j}}\right)$

Projection parameter

We do not assume our model is correct! Instead just use it for defining approximations:

$$
\beta_{0}=\underset{\beta \in \mathbb{R}^{p}}{\arg \min } D_{f}\left(p_{a}(y), g(y ; \beta)\right)
$$

where D_{f} is a distributional distance

$$
D_{f}(p, q)=\int f(p(y), q(y)) q(y) d y
$$

for some given discrepancy function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$

- generalization of f-divergence that includes L_{p}^{p} distances

Parameter interpretation

Mathematically $g\left(y ; \beta_{0}\right)$ is the best-fitting model of this form

- if model is correct, $g\left(y ; \beta_{0}\right)=p_{a}(y)$ is true density
- under misspecification, $g\left(y ; \beta_{0}\right)$ is just best approximation

Actually assuming $p_{a}(y)=g\left(y ; \beta_{0}\right)$ would be semiparametric

- all our results are formally nonparametric

Similar to best linear approximation in regression (White '80)

- long history in stats (Huber, Beran, White, Buja et al., etc.) \& causal (vdL, Cuellar \& Kennedy, Semenova \& Chernoz.)

Statistical epistemology

Can imagine at least 3 approaches here:

1. modelist: assumes finite-dim model is the correct one
2. model-agnostic: uses finite-dim model, allows it to be wrong
3. anti-modelist: model's wrong, \& don't want approximation

Each approach has trade-offs:

- modelist will do well if correct, otherwise biased
- anti-modelist doesn't need to worry about bias as much, but has to live with larger errors due to more ambitious target
- model-agnostic: if model is correct, can do nearly as well as modelist, otherwise inference still valid for approximation \rightarrow but choosing model/distance be a challenge

Distances

- $L_{2}^{2}: f(p, q)=\frac{(p-q)^{2}}{q} \Longrightarrow D_{f}(p, q)=\|p-q\|_{2}^{2}$
- KL: $f(p, q)=\frac{p}{q} \log \left(\frac{p}{q}\right) \Longrightarrow D_{f}(p, q)=\mathrm{KL}(p, q)$
- $\chi^{2}: f(p, q)=(p / q-1)^{2} \Longrightarrow D_{f}(p, q)=\chi^{2}(p, q)$
- Hellinger: $f(p, q)=(\sqrt{p / q}-1)^{2} \Longrightarrow D_{f}(p, q)=H^{2}(p, q)$
- TV: $f(p, q)=\frac{|p-q|}{2 q} \Longrightarrow D_{f}(p, q)=\operatorname{TV}(p, q)=\frac{1}{2}\|p-q\|_{1}$
- TV*: $f(p, q) \frac{\nu_{t}(p-q)}{2 q}$ for ν_{t} smooth approximation of $|\cdot|$

Target 1: Density Functions
Target 2: Density Effects
Model Selection \& Aggregation

Projection examples

Moment condition

For smooth distances, β_{0} can be defined with moment condition

- links projection parameters to integral functionals of $p_{a}(y)$

Proposition

Assume smoothness conditions and let $f_{2}^{\prime}\left(q_{1}, q_{2}\right)=\frac{\partial}{\partial q_{2}} f\left(q_{1}, q_{2}\right)$. Then the projection parameter

$$
\beta_{0}=\underset{\beta \in \mathbb{R}^{p}}{\arg \min } D_{f}\left(p_{a}(y), g(y ; \beta)\right)
$$

is a solution to the moment condition $m(\beta)=0$, where

$$
m(\beta) \equiv \int \frac{\partial g(y ; \beta)}{\partial \beta}\left\{f\left(p_{a}(y), g(y ; \beta)\right)+g(y ; \beta) f_{2}^{\prime}\left(p_{a}(y), g(y ; \beta)\right)\right\} d y
$$

Moment condition examples

If $D_{f}=L_{2}^{2}, Y \in[0,1]$, and $g(y ; \beta)=1+\beta^{\mathrm{T}} b(y)$ then

$$
\beta=\mathbb{E}\left\{b\left(Y^{a}\right)\right\}
$$

if b is series $w / \int b_{j}(y) d y=0 \& \int b_{j}(y) b_{k}(y) d y=\mathbb{1}(j=k)$

- closed form expression! just mean of transformed outcome

If $D_{f}=\mathrm{KL}$ and $g(y ; \beta) \propto \exp \left\{\beta^{\mathrm{T}} b(y)\right\}$ then

$$
m(\beta)=-\mathbb{E}\left\{\frac{\partial}{\partial \beta} \log g\left(Y^{a} ; \beta\right)\right\}=\int b(y)\left\{g(y ; \beta)-p_{a}(y)\right\} d y
$$

- matches moments of b under $g(y ; \beta)$ and $p_{a}(y)$

Target 2: density effects

In addition to density approximations we consider density effects

$$
\psi_{f}=D_{f}\left(p_{1}(y), p_{0}(y)\right)=\int f\left(p_{1}(y), p_{0}(y)\right) p_{0}(y) d y
$$

Note: here we do not require an approximating model!
Give more nuanced picture of how counterfactual densities differ, compared to the usual ATE

Target 1: Density Functions
Target 2: Density Effects
Model Selection \& Aggregation

Model selection \& aggregation

In practice may want to use data to choose among many models

- need to adapt CV/selection a la van der Laan \& Dudoit ('03)

Given set of estimators $\left\{\widehat{g}_{k}(y): k=1, \ldots, K\right\}$ can define risk

$$
R\left(\widehat{g}_{k}\right)=D_{f}\left(p_{a}(y), \widehat{g}_{k}(y)\right)
$$

and oracle aggregator as $\widetilde{g}(y)=\sum_{k} \beta_{0 k} \widehat{g}_{k}(y)$ where

$$
\beta_{0}=\underset{\beta \in B}{\arg \min } D_{f}\left(p_{a}(y), \sum_{k=1}^{K} \beta_{k} \widehat{g}_{k}(y)\right)
$$

for some appropriate selection set, e.g., for convex aggregation the simplex $B=\left\{\left(\beta_{1}, \ldots, \beta_{K}\right) \in \mathbb{R}^{K}: \beta_{k} \geq 0, \sum_{k} \beta_{k}=1\right\}$

Punchline

We give a crucial von Mises (i.e., distributional Taylor) expansion for generic density functionals, which yields EIFs

- so nonparametric efficiency bounds \& local minimax lower bds
- also estimators that can be optimally efficient

Throughout we reference linear map $T \mapsto \phi_{a}(T ; \mathbb{P})$ defined as

$$
\frac{\mathbb{1}(A=a)}{\pi_{a}(X)}\{T-\mathbb{E}(T \mid X, A=a)\}+\mathbb{E}(T \mid X, A=a)-\mathbb{E}\{\mathbb{E}(T \mid X, A=a)\}
$$

which outputs EIF for $\mathbb{E}\{\mathbb{E}(T \mid X, A=a)\}$. In our examples, $T=h(Y)$ will be non-trivial function of outcome Y, depending on model/distance

Master lemma

Lemma

Let $\psi=\psi(\mathbb{P})=\int h\left(p_{a}(y)\right) d y$ for some twice continuously differentiable function h. Then ψ satisfies the von Mises expansion

$$
\psi(\overline{\mathbb{P}})-\psi(\mathbb{P})=\int \phi_{a}\left(h^{\prime}\left(p_{a}(Y)\right) ; \overline{\mathbb{P}}\right) d(\overline{\mathbb{P}}-\mathbb{P})+R_{2}(\overline{\mathbb{P}}, \mathbb{P})
$$

where, for $p_{a}^{*}(y)$ between $p_{a}(y)$ and $\bar{p}_{a}(y), R_{2}(\overline{\mathbb{P}}, \mathbb{P})$ is given by

$$
\begin{gathered}
\iint h^{\prime}\left(\bar{p}_{a}(y)\right)\left\{\frac{\pi_{a}(x)}{\bar{\pi}_{a}(x)}-1\right\}\left\{\eta_{a}(y \mid x)-\bar{\eta}_{a}(y \mid x)\right\} d y d \mathbb{P}(x) \\
\quad+\frac{1}{2} \int h^{\prime \prime}\left(p_{a}^{*}(y)\right)\left\{\bar{p}_{a}(y)-p_{a}(y)\right\}^{2} d y
\end{gathered}
$$

Efficiency Bounds

Estimators

Rates of Convergence

Density functions

Theorem

Let f be $2 \times$ differentiable \& let $f_{j}^{\prime}\left(q_{1}, q_{2}\right)=\frac{\partial}{\partial q_{j}} f\left(q_{1}, q_{2}\right)$ \& $f_{j k}^{\prime \prime}\left(q_{1}, q_{2}\right)=\frac{\partial^{2}}{\partial q_{j} q_{k}} f\left(q_{1}, q_{2}\right)$. The EIF for $m(\beta)$ is $\phi_{a}\left(\gamma_{f}(Y ; \beta)\right)$ where

$$
\gamma_{f}(y ; \beta)=\frac{\partial g(y ; \beta)}{\partial \beta}\left\{f_{1}^{\prime}\left(p_{a}(y), g(y ; \beta)\right)+g(y ; \beta) f_{21}^{\prime \prime}\left(p_{a}(y), g(y ; \beta)\right)\right\}
$$

The EIFs for β_{0} and $g\left(y ; \beta_{0}\right)$ are

$$
-\left.\frac{\partial m(\beta)^{-1}}{\partial \beta} \phi_{\partial}\left(\gamma_{f}(Y ; \beta)\right)\right|_{\beta=\beta_{0}},-\left.\frac{\partial g(y ; \beta)}{\partial \beta^{T}} \frac{\partial m(\beta)^{-1}}{\partial \beta} \phi_{\partial}\left(\gamma_{f}(Y ; \beta)\right)\right|_{\beta=\beta_{0}}
$$

Density functions: $L_{2} \& K L$

Corollary

For L_{2}^{2} and $K L$ divergence the quantity γ_{f} reduces to

$$
\gamma_{f}(y ; \beta)= \begin{cases}-2 \frac{\partial g(y ; \beta)}{\partial \beta} \beta & \text { if } D_{f}=L_{2}^{2} \\ -\frac{\partial \log g(y ; \beta)}{\partial \beta} & \text { if } D_{f}=K L .\end{cases}
$$

Further, if either

1. $D_{f}=L_{2}^{2}$ and $g(y ; \beta)=q(y)+\beta^{\mathrm{T}} b(y)$ is truncated series
2. $D_{f}=K L$ and $g(y ; \beta)=\exp \left\{\beta^{\mathrm{T}} b(y)-C(\beta)\right\}$ is \exp fam
then EIF for $m(\beta)$ is proportional to

$$
\phi_{a}(b(Y))
$$

Density effects

Theorem

In an unrestricted nonparametric model, the efficient influence function for the density effect $\psi_{f}=\int f\left(p_{1}(y), p_{0}(y)\right) p_{0}(y) d y$ is given by

$$
\phi_{1}\left(\lambda_{1}(Y)\right)+\phi_{0}\left(\lambda_{0}(Y)\right)
$$

where

$$
\begin{aligned}
& \lambda_{1}(y)=p_{0}(y) f_{1}^{\prime}\left(p_{1}(y), p_{0}(y)\right) \\
& \lambda_{0}(y)=f\left(p_{1}(y), p_{0}(y)\right)+p_{0}(y) f_{2}^{\prime}\left(p_{1}(y), p_{0}(y)\right) .
\end{aligned}
$$

Density effects: $L_{2} \& K L$

Corollary

If $D_{f}=L_{2}^{2}$, then the efficient influence function for ψ_{f} is

$$
2\left(\phi_{1}-\phi_{0}\right)\left(p_{1}(Y)-p_{0}(Y)\right) .
$$

If $D_{f}=K L$, then the efficient influence function for ψ_{f} is

$$
\phi_{1}\left(\log \left(\frac{p_{1}(Y)}{p_{0}(Y)}\right)\right)-\phi_{0}\left(\frac{p_{1}(Y)}{p_{0}(Y)}\right) .
$$

Proposed density estimator

A plug-in estimator is given by the solution to

$$
\widehat{m}(\beta) \equiv \int \frac{\partial g(y ; \beta)}{\partial \beta}\left\{f\left(\widehat{p}_{a}(y), g(y ; \beta)\right)+g(y ; \beta) f_{2}^{\prime}\left(\widehat{p}_{a}(y), g(y ; \beta)\right)\right\} d y
$$

This will be suboptimal in general. Our proposed estimator solves

$$
\widehat{m}(\beta)+\mathbb{P}_{n}\left\{\widehat{\phi}_{a}\left(\widehat{\gamma}_{f}(Y ; \beta)\right)\right\}=o_{\mathbb{P}}(1 / \sqrt{n})
$$

where $\widehat{\phi}_{a}(T)=\phi_{a}(T ; \widehat{\mathbb{P}})$ is estimated EIF

- i.e., one-step bias-corrected estimators, which take the plug-in \& add estimated bias, i.e., add average estimated IF

Proposed estimator: L_{2} case

Proposition

If $D_{f}=L_{2}^{2}, Y \in[0,1]$, and $g(y ; \beta)=1+\beta^{\mathrm{T}} b(y)$ then plug-in is

$$
\widehat{\beta}=\mathbb{P}_{n}\left\{\widehat{\mu}_{a}(X ; b)\right\}
$$

where $\widehat{\mu}_{a}(x ; b)$ is estimate of $\mu_{a}(x ; b)=\mathbb{E}\{b(Y) \mid X=x, A=a)$. In contrast, our proposed one-step estimator is given by

$$
\widehat{\beta}=\mathbb{P}_{n}\left[\frac{\mathbb{1}(A=a)}{\widehat{\pi}_{a}(X)}\left\{b(Y)-\widehat{\mu}_{a}(X ; b)\right\}+\widehat{\mu}_{a}(X ; b)\right]
$$

Proposed estimator: KL case

Proposition

If $D_{f}=K L$ and $g(y ; \beta)=\exp \left\{\beta^{\mathrm{T}} b(y)-C(\beta)\right\}$, then plug-in solves

$$
\int\left[b(y)-\mathbb{P}_{n}\left\{\widehat{\mu}_{a}(X ; b)\right\}\right] \exp \left\{\beta^{\mathrm{T}} b(y)\right\} d y=0
$$

where $\widehat{\mu}_{a}(x ; b)$ is estimate of $\mu_{a}(x ; b)=\mathbb{E}\{b(Y) \mid X=x, A=a)$. In contrast, our proposed one-step estimator solves

$$
\int\left(b(y)-\mathbb{P}_{n}\left[\frac{\mathbb{1}(A=a)}{\widehat{\pi}_{a}(X)}\left\{b(Y)-\widehat{\mu}_{a}(X ; b)\right\}+\widehat{\mu}_{a}(X ; b)\right]\right) \exp \left\{\beta^{\mathrm{T}} b(y)\right\} d y=0
$$

Rates of convergence

Theorem

Let $\eta=\left(\pi_{a}, \eta_{a}\right), \varphi(Z ; \beta, \eta)=m(\beta ; \eta)+\phi_{a}\left(\gamma_{f}(Y ; \beta), \eta\right)$. Assume:

1. γ_{f} and $1 / \widehat{\pi}_{a}$ are bounded above, \& γ_{f} is differentiable in $p_{a}(y)$, with derivative bounded above by δ.
2. The function class $\left\{\varphi(z ; \beta, \eta): \beta \in \mathbb{R}^{p}\right\}$ is Donsker in β.
3. Consistency, i.e., $\widehat{\beta}-\beta_{0}=o_{\mathbb{P}}(1)$ and $\left\|\widehat{\eta}-\eta_{0}\right\|=o_{\mathbb{P}}(1)$.
4. Map $\beta \mapsto \mathbb{P}\{\varphi(Z ; \beta, \eta)\}$ is differentiable, with derivative matrix $\left.\frac{\partial}{\partial \beta} \mathbb{P}\{\varphi(Z ; \beta, \widehat{\eta})\}\right|_{\beta=\beta_{0}}=V\left(\beta_{0}, \widehat{\eta}\right) \xrightarrow{p} V\left(\beta_{0}, \eta_{0}\right)$.
Then

$$
\begin{aligned}
\widehat{\beta}-\beta_{0}=-V & \left(\beta_{0}, \eta_{0}\right)^{-1}\left(\mathbb{P}_{n}-\mathbb{P}\right)\left\{\phi_{a}\left(\gamma_{f}\left(Y ; \beta_{0}\right)\right)\right\} \\
& +O_{\mathbb{P}}\left(\left\|\widehat{\pi}_{a}-\pi_{a}\right\|\left\|\widehat{\eta}_{a}-\eta_{a}\right\|+\delta\left\|\widehat{p}_{a}-p_{a}\right\|^{2}+o_{\mathbb{P}}\left(\frac{1}{\sqrt{n}}\right)\right) .
\end{aligned}
$$

Rates of convergence

Theorem shows $\widehat{\beta}$ attains faster rates than nuisance estimators $\widehat{\eta}$,
\& can be efficient under weak nonparametric conditions

- 1st condition ensures the IF is not too complex
- 2nd merely requires consistency of $(\widehat{\beta}, \widehat{\eta})$ at any rate
- 3rd requires some smoothness in β, to allow delta method

Rate is second-order in nuisance estimation error

- γ_{f} may not depend on $p_{a}(y)$, so derivative is zero $\& \delta=0$

Proposed effect estimator

The density effect estimators we propose are defined as
$\widehat{\psi}_{f}=\int f\left(\widehat{p}_{1}(y), \widehat{p}_{0}(y)\right) \widehat{p}_{0}(y) d y+\mathbb{P}_{n}\left\{\widehat{\phi}_{1}\left(\widehat{\lambda}_{1}(Y)\right)+\widehat{\phi}_{0}\left(\widehat{\lambda}_{0}(Y)\right)\right\}$
which can again be viewed as one-step bias-corrected estimators, w/plug-in bias estimated via an average of EIF

Note: rather than estimating the density η_{a} \& integrating over its y argument, one could instead regress $\widehat{\lambda}_{a}$ on X for the integral terms in the EIF

Effect estimator: L_{2}

Proposition

If $D_{f}=L_{2}^{2}$ then proposed density effect estimator is

$$
\begin{aligned}
& 2 \mathbb{P}_{n}\left(\frac{2 A-1}{\widehat{\pi}_{A}(X)}\left[\left\{\widehat{p}_{1}(Y)-\widehat{p}_{0}(Y)\right\}-\int\left\{\widehat{p}_{1}(y)-\widehat{p}_{0}(y)\right\} \widehat{\widehat{A}}_{A}(y \mid X) d y\right]\right. \\
& \left.\quad \quad+\int\left\{\widehat{p}_{1}(y)-\widehat{p}_{0}(y)\right\}\left\{\widehat{\eta}_{1}(y \mid X)-\widehat{\eta}_{0}(y \mid X)\right\} d y\right)-\int\left\{\hat{p}_{1}(y)-\widehat{p}_{0}(y)\right\}^{2} d y .
\end{aligned}
$$

Rates of convergence

Theorem

Assume λ_{a} and $1 / \widehat{\pi}_{a}$ are bounded above, and λ_{a} is differentiable in $p_{a}(y)$, with derivative bounded above by δ_{a}. Then

$$
\begin{aligned}
& \widehat{\psi}_{f}-\psi_{f}=\left(\mathbb{P}_{n}-\mathbb{P}\right)\left\{\phi_{1}\left(\lambda_{1}(Y)\right)+\phi_{0}\left(\lambda_{0}(Y)\right)\right\} \\
&+O_{\mathbb{P}}\left(\sum_{a=0}^{1}\left(\left\|\widehat{\pi}_{a}-\pi_{a}\right\|\left\|\widehat{\eta}_{a}-\eta_{a}\right\|+\delta_{a}\left\|\widehat{p}_{a}-p_{a}\right\|^{2}\right)+o_{\mathbb{P}}\left(\frac{1}{\sqrt{n}}\right)\right)
\end{aligned}
$$

Inference

There is a special distinction in density effect estimation. Results suggest 95% Cls of the form

$$
\widehat{\psi}_{f} \pm 1.96 \sqrt{\widehat{\operatorname{cov}}\left\{\widehat{\phi}_{1}\left(\hat{\lambda}_{1}(Y)\right)+\widehat{\phi}_{0}\left(\widehat{\lambda}_{0}(Y)\right)\right\} / n}
$$

These intervals are asymptotically valid as usual when $p_{1} \neq p_{0}$, but not when $p_{1}=p_{0}$, since then IF reduces to zero

- sample avg term no longer dominant
- similar to degenerate U-statistics

Simple fix is to use the interval $\widehat{\psi} \pm z_{\alpha / 2}(s \vee 1 / \sqrt{n})$ where $s=\sqrt{\widehat{\operatorname{cov}}\left\{\widehat{\phi}_{1}\left(\widehat{\lambda}_{1}(Y)\right)+\widehat{\phi}_{0}\left(\widehat{\lambda}_{0}(Y)\right)\right\} / n}$: valid but conservative

Model selection \& aggregation

Consider linear aggregation, where our methods are straightforward. (Note f-divergences may not be well-defined.)

Our proposed approach is:
Step 1. Randomly split sample into training set D_{n}^{0} and test set D_{n}^{1}. Step 2. In training set D_{n}^{0}, estimate models $\widehat{g}_{k}(y)=g\left(y ; \widehat{\beta}_{k}\right)$
Step 3. In test set D_{n}^{1}, estimate projection of linear span of \widehat{g}_{k} onto basis to compute aggregated estimator $\widehat{g}(y)=\sum_{k} \widehat{\theta}_{k} \widehat{g}_{k}(y)$. Step 4. Reverse roles of D_{n}^{0} and D_{n}^{1} and avg two resulting aggregates.

Model selection \& aggregation

For model selection \& convex aggregation, can estimate the distance between $p_{a} \&$ each of k candidates, \& pick minimizer

For example, with L_{2}^{2} can use
$\widehat{\Delta}_{f}\left(g_{k}\right)=\int\left(\widehat{p}_{a}(y)-g_{k}(y)\right)^{2} d y+2 \mathbb{P}_{n}\left\{\widehat{\phi}_{a}\left(\widehat{p}_{a}(Y)-g_{k}(Y)\right)\right\}$.
or pseudo- L_{2}^{2} risk

$$
\begin{aligned}
\widehat{\Delta}_{f}^{*}\left(g_{k}\right)=-2 \mathbb{P}_{n} & {\left[\frac{\mathbb{1}(A=a)}{\widehat{\pi}_{a}(X)}\left\{g_{k}(Y)-\int g_{k}(y) \widehat{\eta}_{a}(y \mid X) d y\right\}\right.} \\
& \left.+\int g_{k}(y) \widehat{\eta}_{a}(y \mid X) d y\right]+\int g_{k}(y)^{2} d y
\end{aligned}
$$

since L_{2}^{2} is this plus a term $\int p_{a}^{2}$ that does not depend on g_{k}

Data

We apply methods to study effects of combination antiretroviral therapy among $n=2319$ patients with HIV

- $Y=$ CD4 count at 96 weeks
- $A=$ combination therapy vs zidovudine (\& observed outcome)
- $X=$ age, weight, Karnofsky score, race, gender, hemophilia, sexual orientation, drug use, symptoms, previous trt history

Data are freely available in speff2trial R package

Methods

We used 5 -fold cross-fitting with random forests

- $\widehat{\eta}_{a}$ constructed via RF regression: $\frac{1}{h} K\left(\frac{Y-y}{h}\right) \sim X, A$

Targets:

- L_{2} distance between p_{1} and p_{0}
- L_{2} projections onto linear series with cosine basis
- L_{2} risk for $k=1, \ldots, 15$

Model selection

Counterfactual density (\& pointwise Cl)

Interpretation

The CD4 densities differ more substantially in the lowest CD4 range (e.g., 0-200)

- combination therapy may have increased CD4 count most for high-risk patients w/ lowest counts under control (zidovudine)

R code

```
# install npcausal package
install.packages("devtools"); library(devtools)
install_github("ehkennedy/npcausal"); library(npcausal)
# load data
library(speff2trial); data(ACTG175); dat <- ACTG175[,c(2:17,19,21,23)]
x <- dat[,!(colnames(dat) %in% c("treat","cd496"))]
# create treatment*missing indicator
a1 <- dat$treat*(!is.na(dat$cd496)); a0 <- (1-dat$treat)*(!is.na(dat$cd496))
a <- a1; a[a0==0 & a1==0] <- -1; y <- dat$cd496; y[is.na(dat$cd496)] <- 0
# estimate pseudo-12 risk for k=1:15
cv.cdensity(y,a,x, kmax=15, gridlen=50,nsplits=5)
# estimate densities at k=4
res <- cdensity(y,a,x, kmax=4, kforplot=c(4,4), gridlen=50,nsplits=5,ylim=c(0,800))
```


Summary

We proposed methods for estimating counterfactual densities and corresponding distances and other functionals

- gave efficiency bounds \& flexible optimal estimators for wide class of models \& projection distances, \& for new effects that quantify treatment impacts on the density scale

Also gave methods for data-driven model selection and aggregation

- illustrated in application studying effects of antiretroviral therapy on CD4 count

Discussion points

Lots of avenues for future work

- nonparametric version of the problem
- non-discrete treatments (where A is e.g., a continuous dose)
- computational aspects (require solving messy estimating eqs)
- time-varying trts, instrumental variables, conditional effects, density-optimal trt regimes, mediation, sensitivity analysis...

Paper is on arxiv: https://arxiv.org/pdf/2102.12034.pdf

Feel free to email with any questions: edward@stat.cmu.edu

Thank you!

Corollary

The quantity $f\left(p_{a}(y), g(y ; \beta)\right)+g(y ; \beta) f_{2}^{\prime}\left(p_{a}(y), g(y ; \beta)\right)$ in the integrand of the moment condition equals

$$
\begin{cases}2\left\{g(y ; \beta)-p_{a}(y)\right\} & \text { if } D_{f}=L_{2}^{2} \\ 1-\frac{p_{a}(y)}{g(y ; \beta)} & \text { if } D_{f}=K L \\ 1-\left\{\frac{p_{a}(y)}{g(y ; \beta)}\right\}^{2} & \text { if } D_{f}=\chi^{2} \\ 1-\sqrt{\frac{p_{a}(y)}{g(y ; \beta)}} & \text { if } D_{f}=H^{2} \\ -\nu_{t}^{\prime}\left\{p_{a}(y)-g(y ; \beta)\right\} / 2 & \text { if } D_{f}=T V^{*}\end{cases}
$$

In a slight abuse of notation we define

$$
\begin{aligned}
\left\|\widehat{\eta}_{a}-\eta_{a}\right\|^{2} & =\int\left\{\int\left|\widehat{\eta}_{a}(y \mid x)-\eta_{a}(y \mid x)\right| d y\right\}^{2} d \mathbb{P}(x) \\
& \leq \int\left\{\widehat{\eta}_{a}(y \mid x)-\eta_{a}(y \mid x)\right\}^{2} d \mathbb{P}(y, x)
\end{aligned}
$$

