Semiparametric Counterfactual Density Estimation

Edward Kennedy & Siva Balakrishnan & Larry Wasserman

Department of Statistics & Data Science Carnegie Mellon University

IU Biostatistics, 19 Mar 2021

Motivation

Let Y^a denote potential/counterfactual outcome that would have been observed under treatment A = a

ightharpoonup causal inference pprox estimating features of distribution of Y^a

Very common to quantify effects with means, e.g., ATE = mean outcome if all versus none were treated

$$\mathbb{E}(Y^1-Y^0)$$

Certainly a useful summary - but can miss important differences!

Introduction
Target Parameters
Optimality & Estimation/Inference
Illustration & Discussion

Motivating application

What is effect on CD4 of combination antiretroviral therapy versus zidovudine alone in patients with HIV?

- ▶ mean effect > median effect
- ▶ how is combination therapy affecting distribution?

Why do we care?

Knowing counterfactual densities can be very useful

if densities differ at all, there is *some* treatment effect

Skew ⇒ some subjects have extreme responses

could try to find who they are, why responses are extreme

Multimodality ⇒ may exist underlying heterogeneous subgroups

could be useful for optimizing policy, understanding variation

Density shape can inform hypotheses about treatment mechanism

- maybe trt reduces variance, or drives up negative outcomes
- can help enhance future treatments, motivate new ones

Work on causal CDF estimation

Large literature on distributional effects via quantiles or CDFs

Abadie ('02), Melly ('05), Chernozhukov et al. ('05, '13),
 Firpo ('07), Rothe ('10), Frolich & Melly ('13), Diaz ('17)

But challenges & methods are very different for densities

- ▶ $\mathbb{P}(Y \leq y) = \mathbb{E}\{\mathbb{1}(Y \leq y)\}$ so reduces to mean estimation
- ► CDF yields unbiased estimators, \sqrt{n} rates; density requires bias/var trade-off (CDF pathwise differentiable, density not)
- CDFs easier to estimate, but densities easier to interpret

CDFs & densities should really be viewed as complementary

Work on causal density estimation

Counterfactual density estimation literature is much more sparse

- Dinardo et al. ('96) IPW kernel estimator
- Robins & Rotnitzky ('01) DR kernel estimator
- vdL & Dudoit ('03), Rubin & vdL ('06) CV w/KL & L2
- ▶ Westling & Carone ('20) monotone densities
- ▶ Kim et al. ('18) DR kernel estimator & L₁ distance

None uses semiparametric approach

▶ i.e., where density is approximated with *d*-dimensional model

Punchline

Our work aims to fill this gap in the literature

▶ also give data-driven model selection & aggregation tools

Separate contribution:

ightharpoonup generic density-based effects, which characterize the distance between counterfactual densities, using a generalized notion of distance that includes f-divergences as well as L_p norms

Setup

Given iid sample of $Z = (X, A, Y) \sim \mathbb{P}$ where

 $lacksquare X \in \mathbb{R}^d = ext{covariates}, \ A \in \{0,1\} = ext{trt}, \ Y \in \mathbb{R} = ext{outcome}$

Some notation:

- $\blacktriangleright \ \pi_a(x) = \mathbb{P}(A = a \mid X = x) = \text{propensity score}$
- $ightharpoonup \eta_a(y\mid x) = \frac{\partial}{\partial y} \mathbb{P}(Y\leq y\mid X=x, A=a) = \text{outcome density}$

and covariate-adjusted density

$$p_a(y) = \int \eta_a(y \mid x) \ d\mathbb{P}(x)$$

= density of Y^a under consistency/positivity/exchangeability

Overview of target parameters

We consider two kinds of target parameters:

- approximation of the counterfactual density, defined via a projection in some distributional distance
- density-based causal effect, measuring difference between counterfactual densities in general f- or other divergences

Density effects give a more nuanced picture of how counterfactual densities differ, compared to the usual ATE

We also show how these two targets can be adapted for *model* selection & aggregation

Target 1: density functions

First: approximations of $p_a(y)$ based on model $\{g(y; \beta) : \beta \in \mathbb{R}^d\}$

ightharpoonup Exponential family: for basis $b(y) = \{b_1(y), ..., b_d(y)\}^{\mathrm{T}}$, let

$$g(y; \beta) = \exp \left\{ \beta^{\mathrm{T}} b(y) - C(\beta) \right\}$$

where $\mathcal{C}(eta) = \log\int \exp\{eta^{ ext{ iny T}}b(y)\}\ dy$ so that $\int g(y;eta)\ dy = 1$

ightharpoonup Truncated series: for base density q(y) can use linear model

$$g(y;\beta) = q(y) + \sum_{j=1}^{d} \beta_j b_j(y)$$

e.g., for $Y \in [0,1]$ take q(y) = 1 and $b_i(y) = \sqrt{2}\cos(\pi iy)$

• Gaussian mixture:
$$g(y; \beta) = \sum_{j=1}^{k} \varpi_j \left(\frac{1}{\sigma_j}\right) \phi\left(\frac{y-\mu_j}{\sigma_j}\right)$$

Projection parameter

We do not assume our model is correct! Instead just use it for defining approximations:

$$eta_0 = \mathop{\mathrm{arg\,min}}_{eta \in \mathbb{R}^p} \ D_f\Big(p_a(y), g(y;eta)\Big)$$

where D_f is a distributional distance

$$D_f(p,q) = \int f(p(y),q(y))q(y) dy$$

for some given discrepancy function $f: \mathbb{R}^2 \to \mathbb{R}$

 \blacktriangleright generalization of f-divergence that includes L_p^p distances

Parameter interpretation

Mathematically $g(y; \beta_0)$ is the best-fitting model of this form

- if model is correct, $g(y; \beta_0) = p_a(y)$ is true density
- under misspecification, $g(y; \beta_0)$ is just best approximation

Actually assuming $p_a(y) = g(y; \beta_0)$ would be semiparametric

all our results are formally nonparametric

Similar to best linear approximation in regression (White '80)

▶ long history in stats (Huber, Beran, White, Buja et al., etc.) & causal (vdL, Cuellar & Kennedy, Semenova & Chernoz.)

Statistical epistemology

Can imagine at least 3 approaches here:

- 1. modelist: assumes finite-dim model is the correct one
- 2. model-agnostic: uses finite-dim model, allows it to be wrong
- 3. <u>anti-modelist</u>: model's wrong, & don't want approximation

Each approach has trade-offs:

- modelist will do well if correct, otherwise biased
- anti-modelist doesn't need to worry about bias as much, but has to live with larger errors due to more ambitious target
- model-agnostic: if model is correct, can do nearly as well as modelist, otherwise inference still valid for approximation
 - → but choosing model/distance be a challenge

Distances

►
$$L_2^2$$
: $f(p,q) = \frac{(p-q)^2}{q} \implies D_f(p,q) = ||p-q||_2^2$

$$ightharpoonup$$
 KL: $f(p,q) = \frac{p}{q} \log \left(\frac{p}{q} \right) \implies D_f(p,q) = \mathsf{KL}(p,q)$

•
$$\chi^2$$
: $f(p,q) = (p/q - 1)^2 \implies D_f(p,q) = \chi^2(p,q)$

► Hellinger:
$$f(p,q) = (\sqrt{p/q} - 1)^2 \implies D_f(p,q) = H^2(p,q)$$

► TV:
$$f(p,q) = \frac{|p-q|}{2q} \implies D_f(p,q) = \text{TV}(p,q) = \frac{1}{2} \|p-q\|_1$$

▶ TV*:
$$f(p,q)\frac{\nu_t(p-q)}{2q}$$
 for ν_t smooth approximation of $|\cdot|$

Projection examples

Moment condition

For smooth distances, β_0 can be defined with moment condition

▶ links projection parameters to integral functionals of $p_a(y)$

Proposition

Assume smoothness conditions and let $f_2'(q_1, q_2) = \frac{\partial}{\partial q_2} f(q_1, q_2)$. Then the projection parameter

$$\beta_0 = \underset{\beta \in \mathbb{R}^p}{\operatorname{arg\,min}} \ D_f\Big(p_a(y), g(y; \beta)\Big)$$

is a solution to the moment condition $m(\beta) = 0$, where

$$m(\beta) \equiv \int \frac{\partial g(y;\beta)}{\partial \beta} \left\{ f\left(p_a(y),g(y;\beta)\right) + g(y;\beta)f_2'\left(p_a(y),g(y;\beta)\right) \right\} dy.$$

Moment condition examples

If $D_f = L_2^2$, $Y \in [0,1]$, and $g(y;\beta) = 1 + \beta^{\mathrm{T}}b(y)$ then

$$\beta = \mathbb{E}\Big\{b(Y^a)\Big\}$$

if b is series w/ $\int b_i(y) dy = 0 \& \int b_i(y)b_k(y) dy = \mathbb{1}(j = k)$

closed form expression! just mean of transformed outcome

If $D_f = \mathsf{KL}$ and $g(y; \beta) \propto \exp\{\beta^{\mathrm{T}} b(y)\}$ then

$$m(\beta) = -\mathbb{E}\left\{\frac{\partial}{\partial \beta}\log g(Y^a;\beta)\right\} = \int b(y)\Big\{g(y;\beta) - p_a(y)\Big\}dy$$

ightharpoonup matches moments of b under $g(y; \beta)$ and $p_a(y)$

Target 2: density effects

In addition to density approximations we consider density effects

$$\psi_f = D_f\Big(p_1(y), p_0(y)\Big) = \int f\Big(p_1(y), p_0(y)\Big)p_0(y) dy$$

Note: here we do not require an approximating model!

Give more nuanced picture of how counterfactual densities differ, compared to the usual ATE

Introduction
Target Parameters
Optimality & Estimation/Inference
Illustration & Discussion

Target 1: Density Functions
Target 2: Density Effects
Model Selection & Aggregation

Model selection & aggregation

In practice may want to use data to choose among many models

▶ need to adapt CV/selection a la van der Laan & Dudoit ('03)

Given set of estimators $\{\widehat{g}_k(y): k=1,...,K\}$ can define risk

$$R(\widehat{g}_k) = D_f(p_a(y), \widehat{g}_k(y))$$

and oracle aggregator as $\widetilde{g}(y) = \sum_k \beta_{0k} \widehat{g}_k(y)$ where

$$\beta_0 = \operatorname*{arg\,min}_{\beta \in B} D_f \left(p_{\mathsf{a}}(y), \sum_{k=1}^K \beta_k \widehat{g}_k(y) \right)$$

for some appropriate selection set, e.g., for convex aggregation the simplex $B = \{(\beta_1, ..., \beta_K) \in \mathbb{R}^K : \beta_k \geq 0, \sum_k \beta_k = 1\}$

Punchline

We give a crucial von Mises (i.e., distributional Taylor) expansion for generic density functionals, which yields EIFs

- so nonparametric efficiency bounds & local minimax lower bds
- ▶ also estimators that can be optimally efficient

Throughout we reference linear map $T \mapsto \phi_a(T; \mathbb{P})$ defined as

$$\frac{\mathbb{I}(A=a)}{\pi_a(X)}\Big\{T-\mathbb{E}(T\mid X,A=a)\Big\}+\mathbb{E}(T\mid X,A=a)-\mathbb{E}\{\mathbb{E}(T\mid X,A=a)\}$$

which outputs EIF for $\mathbb{E}\{\mathbb{E}(T\mid X, A=a)\}$. In our examples, T=h(Y) will be non-trivial function of outcome Y, depending on model/distance

Master lemma

Lemma

Let $\psi = \psi(\mathbb{P}) = \int h(p_a(y)) dy$ for some twice continuously differentiable function h. Then ψ satisfies the von Mises expansion

$$\psi(\overline{\mathbb{P}}) - \psi(\mathbb{P}) = \int \phi_{\mathsf{a}}\left(h'\Big(p_{\mathsf{a}}(Y)\Big); \overline{\mathbb{P}}\right) \ d(\overline{\mathbb{P}} - \mathbb{P}) + R_2(\overline{\mathbb{P}}, \mathbb{P})$$

where, for $p_a^*(y)$ between $p_a(y)$ and $\overline{p}_a(y)$, $R_2(\overline{\mathbb{P}}, \mathbb{P})$ is given by

$$\begin{split} \int \int h'(\overline{p}_{a}(y)) \left\{ \frac{\pi_{a}(x)}{\overline{\pi}_{a}(x)} - 1 \right\} \left\{ \eta_{a}(y \mid x) - \overline{\eta}_{a}(y \mid x) \right\} \; dy \; d\mathbb{P}(x) \\ + \frac{1}{2} \int h''(p_{a}^{*}(y)) \left\{ \overline{p}_{a}(y) - p_{a}(y) \right\}^{2} \; dy, \end{split}$$

Density functions

Theorem

Let f be 2x differentiable & let $f'_j(q_1, q_2) = \frac{\partial}{\partial q_j} f(q_1, q_2)$ & $f''_{jk}(q_1, q_2) = \frac{\partial^2}{\partial q_j \partial q_k} f(q_1, q_2)$. The EIF for $m(\beta)$ is $\phi_a(\gamma_f(Y; \beta))$ where

$$\gamma_f(y;\beta) = \frac{\partial g(y;\beta)}{\partial \beta} \left\{ f_1' \Big(p_a(y), g(y;\beta) \Big) + g(y;\beta) f_{21}'' \Big(p_a(y), g(y;\beta) \Big) \right\}$$

The EIFs for β_0 and $g(y; \beta_0)$ are

$$-\frac{\partial \textit{m}(\beta)}{\partial \beta}^{-1}\phi_{\textit{a}}\Big(\gamma_{\textit{f}}(\textit{Y};\beta)\Big) \Bigm|_{\beta=\beta_{0}}, \ -\frac{\partial \textit{g}(\textit{y};\beta)}{\partial \beta^{\text{T}}}\frac{\partial \textit{m}(\beta)}{\partial \beta}^{-1}\phi_{\textit{a}}\Big(\gamma_{\textit{f}}(\textit{Y};\beta)\Big) \Bigm|_{\beta=\beta_{0}}$$

Density functions: L₂ & KL

Corollary

For L_2^2 and KL divergence the quantity γ_f reduces to

$$\gamma_f(y;\beta) = \begin{cases} -2\frac{\partial g(y;\beta)}{\partial \beta} & \text{if } D_f = L_2^2\\ -\frac{\partial \log g(y;\beta)}{\partial \beta} & \text{if } D_f = KL. \end{cases}$$

Further, if either

- 1. $D_f = L_2^2$ and $g(y; \beta) = q(y) + \beta^T b(y)$ is truncated series
- 2. $D_f = KL$ and $g(y; \beta) = \exp\{\beta^T b(y) C(\beta)\}$ is exp fam then EIF for $m(\beta)$ is proportional to

$$\phi_a(b(Y))$$

Density effects

Theorem

In an unrestricted nonparametric model, the efficient influence function for the density effect $\psi_f = \int f\left(p_1(y), p_0(y)\right) p_0(y) dy$ is given by

$$\phi_1(\lambda_1(Y)) + \phi_0(\lambda_0(Y))$$

where

$$\lambda_1(y) = p_0(y)f_1'(p_1(y), p_0(y))$$

$$\lambda_0(y) = f(p_1(y), p_0(y)) + p_0(y)f_2'(p_1(y), p_0(y)).$$

Density effects: L₂ & KL

Corollary

If $D_f = L_2^2$, then the efficient influence function for ψ_f is

$$2(\phi_1-\phi_0)\Big(p_1(Y)-p_0(Y)\Big).$$

If $D_f = KL$, then the efficient influence function for ψ_f is

$$\phi_1\left(\log\left(\frac{p_1(Y)}{p_0(Y)}\right)\right) - \phi_0\left(\frac{p_1(Y)}{p_0(Y)}\right).$$

Proposed density estimator

A plug-in estimator is given by the solution to

$$\widehat{m}(\beta) \equiv \int \frac{\partial g(y;\beta)}{\partial \beta} \left\{ f\left(\widehat{p}_{a}(y),g(y;\beta)\right) + g(y;\beta)f_{2}'\left(\widehat{p}_{a}(y),g(y;\beta)\right) \right\} dy$$

This will be suboptimal in general. Our proposed estimator solves

$$\widehat{m}(\beta) + \mathbb{P}_n \left\{ \widehat{\phi}_a \Big(\widehat{\gamma}_f (Y; \beta) \Big) \right\} = o_{\mathbb{P}} (1/\sqrt{n})$$

where $\widehat{\phi}_{a}(T) = \phi_{a}(T; \widehat{\mathbb{P}})$ is estimated EIF

i.e., one-step bias-corrected estimators, which take the plug-in
 & add estimated bias, i.e., add average estimated IF

Proposed estimator: L_2 case

Proposition

If $D_f = L_2^2$, $Y \in [0,1]$, and $g(y;\beta) = 1 + \beta^T b(y)$ then plug-in is

$$\widehat{\beta} = \mathbb{P}_n\{\widehat{\mu}_a(X;b)\},\,$$

where $\widehat{\mu}_a(x;b)$ is estimate of $\mu_a(x;b) = \mathbb{E}\{b(Y) \mid X=x, A=a\}$. In contrast, our proposed one-step estimator is given by

$$\widehat{\beta} = \mathbb{P}_n \left[\frac{\mathbb{1}(A=a)}{\widehat{\pi}_a(X)} \Big\{ b(Y) - \widehat{\mu}_a(X;b) \Big\} + \widehat{\mu}_a(X;b) \right]$$

Proposed estimator: KL case

Proposition

If $D_f = KL$ and $g(y; \beta) = \exp\{\beta^T b(y) - C(\beta)\}$, then plug-in solves

$$\int \left[b(y) - \mathbb{P}_n \{ \widehat{\mu}_a(X; b) \} \right] \exp \left\{ \beta^{\mathrm{T}} b(y) \right\} dy = 0$$

where $\widehat{\mu}_a(x;b)$ is estimate of $\mu_a(x;b) = \mathbb{E}\{b(Y) \mid X=x, A=a\}$. In contrast, our proposed one-step estimator solves

$$\int \left(b(y) - \mathbb{P}_n\left[\frac{\mathbb{1}(A=a)}{\widehat{\pi}_a(X)}\Big\{b(Y) - \widehat{\mu}_a(X;b)\Big\} + \widehat{\mu}_a(X;b)\right]\right) \exp\left\{\beta^{\mathrm{T}}b(y)\right\} dy = 0$$

Rates of convergence

Theorem

Let $\eta = (\pi_a, \eta_a), \varphi(Z; \beta, \eta) = m(\beta; \eta) + \phi_a(\gamma_f(Y; \beta), \eta)$. Assume:

- 1. γ_f and $1/\widehat{\pi}_a$ are bounded above, & γ_f is differentiable in $p_a(y)$, with derivative bounded above by δ .
- **2**. The function class $\{\varphi(z;\beta,\eta):\beta\in\mathbb{R}^p\}$ is Donsker in β .
- 3. Consistency, i.e., $\widehat{\beta} \beta_0 = o_{\mathbb{P}}(1)$ and $\|\widehat{\eta} \eta_0\| = o_{\mathbb{P}}(1)$.
- **4.** Map $\beta \mapsto \mathbb{P}\{\varphi(Z;\beta,\eta)\}$ is differentiable, with derivative matrix $\frac{\partial}{\partial \beta}\mathbb{P}\{\varphi(Z;\beta,\widehat{\eta})\}|_{\beta=\beta_0} = V(\beta_0,\widehat{\eta}) \stackrel{P}{\to} V(\beta_0,\eta_0)$.

Then

$$\begin{split} \widehat{\beta} - \beta_0 &= -V(\beta_0, \eta_0)^{-1} (\mathbb{P}_n - \mathbb{P}) \left\{ \phi_{\mathsf{a}} \Big(\gamma_{\mathsf{f}} (Y; \beta_0) \Big) \right\} \\ &+ O_{\mathbb{P}} \left(\| \widehat{\pi}_{\mathsf{a}} - \pi_{\mathsf{a}} \| \| \widehat{\eta}_{\mathsf{a}} - \eta_{\mathsf{a}} \| + \delta \| \widehat{\rho}_{\mathsf{a}} - p_{\mathsf{a}} \|^2 + o_{\mathbb{P}} \left(\frac{1}{\sqrt{n}} \right) \right). \end{split}$$

Rates of convergence

Theorem shows $\widehat{\beta}$ attains faster rates than nuisance estimators $\widehat{\eta}$, & can be efficient under weak nonparametric conditions

- ▶ 1st condition ensures the IF is not too complex
- ▶ 2nd merely requires consistency of $(\widehat{\beta}, \widehat{\eta})$ at any rate
- \triangleright 3rd requires some smoothness in β , to allow delta method

Rate is second-order in nuisance estimation error

 $ightharpoonup \gamma_f$ may not depend on $p_a(y)$, so derivative is zero & $\delta=0$

Proposed effect estimator

The density effect estimators we propose are defined as

$$\widehat{\psi}_f = \int f\Big(\widehat{p}_1(y), \widehat{p}_0(y)\Big)\widehat{p}_0(y) \, dy + \mathbb{P}_n\left\{\widehat{\phi}_1\Big(\widehat{\lambda}_1(Y)\Big) + \widehat{\phi}_0\Big(\widehat{\lambda}_0(Y)\Big)\right\}$$

which can again be viewed as one-step bias-corrected estimators, w/plug-in bias estimated via an average of EIF

Note: rather than estimating the density η_a & integrating over its y argument, one could instead regress $\hat{\lambda}_a$ on X for the integral terms in the FIF

Effect estimator: L_2

Proposition

If $D_f = L_2^2$ then proposed density effect estimator is

$$2 \mathbb{P}_{n} \left(\frac{2A-1}{\widehat{\pi}_{A}(X)} \left[\left\{ \widehat{p}_{1}(Y) - \widehat{p}_{0}(Y) \right\} - \int \left\{ \widehat{p}_{1}(y) - \widehat{p}_{0}(y) \right\} \widehat{\eta}_{A}(y \mid X) \ dy \right]$$

$$+ \int \left\{ \widehat{p}_{1}(y) - \widehat{p}_{0}(y) \right\} \left\{ \widehat{\eta}_{1}(y \mid X) - \widehat{\eta}_{0}(y \mid X) \right\} \ dy \right) - \int \left\{ \widehat{p}_{1}(y) - \widehat{p}_{0}(y) \right\}^{2} \ dy.$$

Rates of convergence

Theorem

Assume λ_a and $1/\widehat{\pi}_a$ are bounded above, and λ_a is differentiable in $p_a(y)$, with derivative bounded above by δ_a . Then

$$\begin{split} \widehat{\psi}_{f} - \psi_{f} &= \left(\mathbb{P}_{n} - \mathbb{P}\right) \left\{ \phi_{1} \Big(\lambda_{1}(Y) \Big) + \phi_{0} \Big(\lambda_{0}(Y) \Big) \right\} \\ &+ O_{\mathbb{P}} \left(\sum_{a=0}^{1} \Big(\|\widehat{\pi}_{a} - \pi_{a}\| \|\widehat{\eta}_{a} - \eta_{a}\| + \delta_{a} \|\widehat{\rho}_{a} - \rho_{a}\|^{2} \Big) + o_{\mathbb{P}} \left(\frac{1}{\sqrt{n}} \right) \right) \end{split}$$

Inference

There is a special distinction in density effect estimation. Results suggest 95% CIs of the form

$$\widehat{\psi}_{f} \pm 1.96 \sqrt{\widehat{\mathsf{cov}}\left\{\widehat{\phi}_{1}\Big(\widehat{\lambda}_{1}(Y)\Big) + \widehat{\phi}_{0}\Big(\widehat{\lambda}_{0}(Y)\Big)\right\}/n}$$

These intervals are asymptotically valid as usual when $p_1 \neq p_0$, but not when $p_1 = p_0$, since then IF reduces to zero

- sample avg term no longer dominant
- similar to degenerate U-statistics

Simple fix is to use the interval $\widehat{\psi} \pm z_{lpha/2} (s ee 1/\sqrt{n})$ where

$$s = \sqrt{\widehat{\mathsf{cov}}\{\widehat{\phi}_1(\widehat{\lambda}_1(Y)) + \widehat{\phi}_0(\widehat{\lambda}_0(Y))\}/n}$$
: valid but conservative

Model selection & aggregation

Consider linear aggregation, where our methods are straightforward. (Note f-divergences may not be well-defined.)

Our proposed approach is:

- Step 1. Randomly split sample into training set D_n^0 and test set D_n^1 .
- Step 2. In training set D_n^0 , estimate models $\widehat{g}_k(y) = g(y; \widehat{\beta}_k)$
- Step 3. In test set D_n^1 , estimate projection of linear span of \widehat{g}_k onto basis to compute aggregated estimator $\widehat{g}(y) = \sum_k \widehat{\theta}_k \widehat{g}_k(y)$.
- Step 4. Reverse roles of D_n^0 and D_n^1 and avg two resulting aggregates.

Model selection & aggregation

For model selection & convex aggregation, can estimate the distance between p_a & each of k candidates, & pick minimizer

For example, with L_2^2 can use

$$\widehat{\Delta}_f(g_k) = \int \left(\widehat{p}_a(y) - g_k(y)\right)^2 dy + 2\mathbb{P}_n\left\{\widehat{\phi}_a(\widehat{p}_a(Y) - g_k(Y))\right\}.$$

or pseudo- L_2^2 risk

$$\begin{split} \widehat{\Delta}_f^*(g_k) &= -2 \, \mathbb{P}_n \bigg[\frac{\mathbb{1}(A=a)}{\widehat{\pi}_a(X)} \, \bigg\{ g_k(Y) - \int g_k(y) \widehat{\eta}_a(y \mid X) \, \, dy \bigg\} \\ &+ \int g_k(y) \widehat{\eta}_a(y \mid X) \, \, dy \bigg] + \int g_k(y)^2 \, \, dy, \end{split}$$

since L_2^2 is this plus a term $\int p_a^2$ that does not depend on g_k

Data

We apply methods to study effects of combination antiretroviral therapy among n=2319 patients with HIV

- \triangleright Y = CD4 count at 96 weeks
- ightharpoonup A =combination therapy vs zidovudine (& observed outcome)
- X =age, weight, Karnofsky score, race, gender, hemophilia, sexual orientation, drug use, symptoms, previous trt history

Data are freely available in speff2trial R package

Methods

We used 5-fold cross-fitting with random forests

 $ightharpoonup \widehat{\eta}_a$ constructed via RF regression: $\frac{1}{h}K\left(\frac{Y-y}{h}\right)\sim X,A$

Targets:

- $ightharpoonup L_2$ distance between p_1 and p_0
- L₂ projections onto linear series with cosine basis
- ▶ L_2 risk for k = 1, ..., 15

Model selection

Interpretation

The CD4 densities differ more substantially in the lowest CD4 range (e.g., 0-200)

 combination therapy may have increased CD4 count most for high-risk patients w/ lowest counts under control (zidovudine)

R code

```
# install npcausal package
install.packages("devtools"); library(devtools)
install_github("ehkennedv/npcausal"); library(npcausal)
# load data
library(speff2trial); data(ACTG175); dat <- ACTG175[,c(2:17,19,21,23)]
x \leftarrow dat[.!(colnames(dat) \%in\% c("treat","cd496"))]
# create treatment*missing indicator
a1 <- dat$treat*(!is.na(dat$cd496)); a0 <- (1-dat$treat)*(!is.na(dat$cd496))
a \leftarrow a1: a[a0==0 \& a1==0] \leftarrow -1: v \leftarrow dat (d496: v[is.na(dat (d496)] \leftarrow 0
# estimate pseudo-12 risk for k=1:15
cv.cdensity(y,a,x, kmax=15, gridlen=50,nsplits=5)
# estimate densities at k=4
res <- cdensity(v.a.x, kmax=4, kforplot=c(4,4), gridlen=50.nsplits=5.vlim=c(0.800))
```

Summary

We proposed methods for estimating counterfactual densities and corresponding distances and other functionals

gave efficiency bounds & flexible optimal estimators for wide class of models & projection distances, & for new effects that quantify treatment impacts on the density scale

Also gave methods for data-driven model selection and aggregation

▶ illustrated in application studying effects of antiretroviral therapy on CD4 count

Discussion points

Lots of avenues for future work

- nonparametric version of the problem
- ▶ non-discrete treatments (where A is e.g., a continuous dose)
- computational aspects (require solving messy estimating eqs)
- time-varying trts, instrumental variables, conditional effects, density-optimal trt regimes, mediation, sensitivity analysis...

Paper is on arxiv: https://arxiv.org/pdf/2102.12034.pdf

Feel free to email with any questions: edward@stat.cmu.edu

Thank you!

Wrapping up

Corollary

The quantity $f\left(p_a(y),g(y;\beta)\right)+g(y;\beta)f_2'\left(p_a(y),g(y;\beta)\right)$ in the integrand of the moment condition equals

$$\begin{cases} 2\left\{g(y;\beta) - p_a(y)\right\} & \text{if } D_f = L_2^2 \\ 1 - \frac{p_a(y)}{g(y;\beta)} & \text{if } D_f = KL \end{cases}$$

$$1 - \left\{\frac{p_a(y)}{g(y;\beta)}\right\}^2 & \text{if } D_f = \chi^2$$

$$1 - \sqrt{\frac{p_a(y)}{g(y;\beta)}} & \text{if } D_f = H^2$$

$$-\nu_t' \left\{p_a(y) - g(y;\beta)\right\}/2 & \text{if } D_f = TV^*.$$

In a slight abuse of notation we define

$$\|\widehat{\eta}_{a} - \eta_{a}\|^{2} = \int \left\{ \int |\widehat{\eta}_{a}(y \mid x) - \eta_{a}(y \mid x)| \ dy \right\}^{2} \ d\mathbb{P}(x)$$

$$\leq \int \{\widehat{\eta}_{a}(y \mid x) - \eta_{a}(y \mid x)\}^{2} \ d\mathbb{P}(y, x)$$