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Punchline

There have been many many proposals in recent years for flexible
estimation of heterogeneous causal effects

» but crucial theoretical gaps remain, especially when effects
have nontrivial structure (e.g., smoothness/sparsity)

P can current methods be improved? what is the best possible
error one could achieve?

The goals of this work are: flexible estimators + minimax rates

1. more flexible estimators, with better error guarantees
- (Kennedy, 2020)

2. resolve open question of minimax optimality
- (Kennedy, Balakrishnan, Robins, & Wasserman, 2022)

1/47



Heterogeneous Causal Effects

Treatments/policies are often studied at population level

> i.e., the average outcome if all versus none were treated

However this can obscure important heterogeneity

> effect may be zero on average - but in theory could be
benefitting some and harming others

Why should we care about heterogeneity?

» improve understanding of variation, help inform policy &
optimize treatment decisions

» critical across medicine & social sciences
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Subgroup

All patients

Age
=18 to <65 yr
=65 yr

Age, risk for severe Covid-19
18 to <65 yr, not at risk
18 to <65 yr, at risk
=265 yr

Sex
Male
Female

At risk for severe Covid-19
Yes
No

Race and ethnic group
White
Communities of color

Placebo mRNA-1273
(N=14,073) (N=14,134)
no. of events/total no.
185/14,073 11/14,134
156/10,521 7/10,551
29/3552 4/3583
121/8403 5/8396
35/2118 2/2155
29/3552 4/3583
87/7462 4/7366
98/6611 7/6768
43/3167 4/3206
142/10,906 7/10,928
144/8916 10/9023
41/5132 1/5088
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93.1 (85.2-96.8)

90.9 (74.7-96.7)
95.1 (89.6-97.7)

93.2 (87.1-96.4)
97.5 (82.2-99.7)

Figure 4. Vaccine Efficacy of mRNA-1273 to Prevent Covid-19 in Subgroups.
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Table 3. Vaccine Efficacy against Covid-19 with Onset at Least 14 Days and at Least 28 Days after Administration of Vacc

Population).*

Variable

Worldwide
No. of participants
Moderate to severe—critical Covid-19
Severe—critical Covid-19
United States
No. of participants
Moderate to severe—critical Covid-19
Severe—critical Covid-19
Brazil
No. of participants
Moderate to severe—critical Covid-19
Severe—critical Covid-19
South Africa
No. of participants
Moderate to severe—critical Covid-19

Severe—critical Covid-19

Ad26.COV2.S
no. person-yr

19,514

173 3113.9

19 31247
9,119

51 1414.0

4 1417.2
3,370

39 555.7

2 558.9
2,473

43 377.6

8 380.2

=14 Days after Administration:

no.

19,544
509
80

9,086
196
18

3,355
114
11

2,496
90
30

Placebo

person-yr

3089.1
3121.0

13913
1404.8

548.8
556.8

379.2
382.9

Vaccine Efficacy
(95% Cl)

%

66.3 (59.9to0 71.8)
76.3 (57.9 to 87.5)

74.4 (65.0 to 81.6)
78.0 (33.1to 94.6)

66.2 (51.0t0 77.1)
81.9 (17.0t0 98.1)

52.0 (30.3 to 67.4)
73.1 (40.0 to 89.4)
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Voter turnout rates, 1789 - 2020
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Get out the vote

Voters are older, wealthier, and whiter than non-voters
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DON’T FORGET TO VOTE

TABLEG6 Effects of Mobilization Strategies
Listed from Most Effective to Least

Effective
Mobilization Strategy Effect Kosuke Imai and Aaron Strauss
Face-to-Face Canvass 8% ag0q245 ages 195
Average Volunteer Phone Calls 3% age. M‘ons
Text Messaging 3% o
Street Signs in New York City 3%
Leaflets 1.2%
Direct Mail 0.6% oot o072 g donsh=5.985
Average Commercial Phone Calls 0.55% Igdense 5555 ek 552 o
Robo Calls none o~ 0%
E-mail none
Note: The data in this table come from Nickerson (2007b), Green 042 o7
and Gerber (2004), and Panagopoulos (2009). o o

Fig.2 Final classification trees for the control group (left panel) and treatment group (right
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Setup

Consider the classic causal inference data structure:
» covariates X € RY, treatment A € {0,1}, outcome Y € R

e.g., in GOTV example:
> X = city, party affiliation, voting history, age, family size, race

> A = whether contacted by canvasser
» Y = whether subject voted in local election or not

Let Y@ denote counterfactual outcome under treatment A = a
> eg., Y1 = whether would've voted if contacted, Y° = if not
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Targets & identification

The average treatment effect (ATE) is
E(Y! - Y9
i.e., the mean outcome if all versus none were treated
Heterogeneous effect estimation = conditional ATE (CATE)
(x) =EB(Y! - Y| X =x)
Under standard no unmeasured confounding assumptions we have
E(Y? | X=x)=E(Y | X =x,A=a) = pus(x)

and so
7(x) = pa(x) — po(x)
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Key ldea

How to estimate 7(x) = u1(x) — po(x)? Simplest just plugs in
7(x) = fia(x) — Fio(x)
However this can be highly suboptimal (MSE too large)

Key idea: complexity of 7(x) can be very different from p,(x)
> 1, is a natural outcome process that may be very complex

» CATE 7(x) could very well be constant or even null!

In general 7(x) has to be at least as smooth/sparse as i,

» but could be much more smooth/sparse
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Toy Ex:
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Benchmarking optimality

So plug-in will generally be deficient/suboptimal

» what's the best performance we can hope for?

First simple approach: suppose we regressed (Y — Y?) on X
» this is an oracle estimator - it knows potential outcomes

> call this oracle 7*(x)

Then if 7(x) is s-sparse, we might hope for

slogd

RI\/ISE{?(X)} ~ RI\/ISE{?*(X)} ~

n

Or if 7(x) is s-smooth, we might hope for

RMSE{7(x) } ~ RMSE{7"(x) } ~ n 707
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What happens with ATE?

How can we exploit any potential simplicity in 7, like oracle?
» can take intuition from ATE case (CATE ~ ATE in small bin)

For estimating ATEs, a lot is known (but not all!)

» doubly robust (i.e., semiparametric / targeted / double ML)
methods can be efficient in large nonparametric models

DR intuition: correct bias of plug-in by estimating & incorporating
propensity scores 7(x) = P(A=1| X = x)

DR Est = Avg( estimated pseudo-outcome )
= Avg( regression prediction + IPW weighted residuals )

A—7(X)

Fue = P [120X) = 100X) + 0 s Y = a0}
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DR-Learner

Intuition: for ATEs we average, for CATEs let’s regress
» we call this “DR-Learner”
» first proposed by van der Laan (2005, 2013), recently
rediscovered, but little in the way of general analysis

Algorithm (DR-Learner)

Step 1. Nuisance training:
Construct estimates (T, [, 1) of (7, po, p1) using DY.
Step 2. Pseudo-outcome regression: Construct the pseudo-outcome

B(2) = 100 - 100 + =12y LY — 7400}

and regress it on covariates X in the test sample DJ, yielding

Tar(x) = En{B(Z) | X = x}.
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Some DR-Learner history

First proposed by van der Laan (2005, 2013)
» but did not give specific error bounds

Kernel & series versions rederived in recent years

» Lee et al (2017), Semenova & Chernozhukov (2017), Zimmert
& Lechner (2019), Fan et al (2019)

» but: tailored to particular 2nd-stage methods

» also: used restrictive assumptions on nuisance estimators
and/or didn't allow simpler CATE

Foster & Syrgkanis (2019) studied ERM version

» but: error bounds were not doubly robust, also global & loose
relative to oracle

18/47



DR-Learner

In particular, these previous analyses obtain rates like:
RMSE(?) ~ RMSE(%*) + \//TH{RMSE(%) X RI\/ISE(ﬁa)}
with k, — oo, or

RMSE(?) ~ RMSE(?*) + RMSE(%)2 + RI\/ISE(ﬁa)2

Q: What can we say about the DR-Learner if we are agnostic
about what regression tools we use in the 1st & 2nd stage?

» Can these conditions for oracle optimality be improved?
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DR-Learner error bound

Theorem (DR-Learner Master Theorem)

Assume IE, is stable and § is consistent.

Denote oracle estimator by 7(x) = En(Y! — Y° | X), with risk
R*(x) = MSE(7(x)) = BI{7(x) — 7(x)}?].

Far(x) = F(x) + Op (Bab(X) | X = x}) + or (VR*(x)).
for “doubly robust” bias term

50 — i {700 = 700 H{ia(x) = 1)}

pord 7(x) + (1 —a)(1 —7(x))
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Stability

Definition
The estimator [E,, is stable (with respect to distance d) if

Eq{f(2) | X = x} ~Ba{f(Z) | X = x} = Eofb(X) | X = x} 20
RMSE*

whenever d(?, f) 50, for
> b(x) = E{f(Z)— f(Z) | D", X = x} the conditional bias of ,

> RMSE*2 — | <[En{f(2) X = x} — B{f(Z) | X = x}]2>.

Theorem 1 of Kennedy (2020): Linear smoothers are stable with
respect to a weighted Lo(P) norm.
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Discussion: DR-Learner error bound

This is a nearly model-free, method-agnostic error bound

» shows DR-Learner error can’t deviate from oracle by more
than product of nuisance errors

> essentially a CATE analog of DR results for ATEs
» allows faster rates for CATE even w/slower nuisance rates

> gives smaller risk vs. previous method-specific results

This result is very general, allowing generic methods/assumptions
> now we specialize to classic Holder s-smooth functions

» i.e., all derivatives up to s — 1 bounded, & highest continuous
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DR-Learner error bounds: Smoothness

Corollary (DR-Learner Under Smoothness)
Suppose assumptions of DR-Learner Theorem hold, and that:

1. 7 is a-smooth, and estimated with MSE n~Y/(2+&).
d
2. s are B-smooth, and estimated with MSE nfl/(%?).

If CATE 7 is v-smooth and IAE,, is minimax optimal, then
d d
Far) =) = Op (/17 var )y /(01

and thus the DR-Learner achieves oracle rate if

VB > d/2

J1+2(1+£)

for's the harmonic mean of o and 3.
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RMSE rate (k in n™)
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Dimension d=20, CATE smoothness y=2d

= Plug-in
—— DR-Learner

Oracle rate
ATE minimax bd

Nuisance smoothness s
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Discussion

Previous result shows DR-Learner can adapt to CATE smoothness
» even when propensity score & regressions are less smooth

> gives sufficient conditions for oracle rate n=7/(27+d)

Analogous condition for DR estimator of ATE: /a8 > d/2

» as CATE gets more smooth, these conditions align
Term dividing d/2 is “lowered bar” for optimal estimation due to
oracle rate being slower than root-n

P arose in dose-response but missed in recent CATE papers

See paper for result for generic regression w/estimated outcomes
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RMSE rate (k in n™)
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Minimax optimality

Q: Are these MSE rates optimal? Can they be improved?
A natural way to characterize optimality is via the minimax rate

R, = inf sup Ep|7(x) — 7p(x)|
T Pep

i.e., the best possible (worst-case) error, across all estimators
Minimax rates are well-understood in many problems:

. . - d
» smooth nonparametric regression: n 1/(2+5)

» smooth functional estimation: max{n_l/(”%),l/ﬁ}

> sparse linear regression: /slogd/n

» density estimation w/measurement error: (logn)~°
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Minimax optimality

Minimax rates have crucial implications, practical & theoretical
» gives benchmark for best possible performance

» precisely illustrates fundamental limits / statistical difficulty

Main idea in deriving lower bounds:
P construct distributions so similar they're indistinguishable
» but for which parameter is maximally separated

= then no estimator can have error smaller than separation

For nonlinear functionals, mixture distributions are required
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Minimax optimality

Three ingredients in deriving minimax lower bound:
1. pair of mixture distributions
2. distance between their n-fold products (ideally small)
3. separation of parameter (ideally large)

Lemma (Tsybakov)
Let Py, @\ € P and let w be a prior distribution over \. If

H? (/ Py dw(A),/Qg dw(A)) <a<?2

and [1(Py) — ¥ (Qy)| > s >0, then

5]

Rn:iqfsupEP’gZ—¢(P)‘>4{1— a(l—o‘)}.

¢ PeP
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Construction

Main idea:
» perturb CATE with a flat-top bump at xg
» perturb PS 7 and regression 1, but only locally near xg

P> only get observations at flat parts of bumps

Also: less smooth nuisance also perturbed under both Py and Q)

This is like a combination of lower bound constructions for
» nonparametric regression (cf. Tsybakov 2009)
» functional estimation (Birge & Massart ‘95, Robins et al. ‘09)
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Null Py

xo—h/2+h/k Xo+h/2-h/k
\ |
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Alt. Q)\ Xo-h/2+h/k Xo+h/2-h/k

0.5+ (h/k)*

0.5
|

0.5-(h/k)?

T T
Xo-h/2 Xo Xo+h/2

32/47



Hellinger distance

In general, the distance between mixtures can be complicated

> we give a local adaptation of a nice lemma from Robins et al.
(2009) to relate to simple posteriors over 1 observation

Proposition
Let s = # Under some conditions we have

H2 ( / P! des()), / o dw(A)) < (Z;Zi) (k/hd)%s/ ‘

Now we choose h? ~ (h/kY9)? and k ~ n(d/2s=d/7)/(1+d/2v+d/4s)
to ensure the Hellinger distance is bounded (e.g., less than one)
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Overall minimax rate

Since the separation in the CATE is h?, this implies the following
minimax lower bound:

Theorem
Let P denote the model where

» f(x) satisfies some conditions (see paper),
» 7(x) is a-smooth,
» 1o(x) is B-smooth,

» 7(x) is y-smooth,

Then for s = (o + [3)/2 the minimax rate is lower bounded as

71/<1+2%+4i> . d/4

. ~ n v A ifs < —t7—
inf sup Ep|T(x0) — 7p(x0)| 2 —1/(2+4) 1+d/2y
W PeEP n gl otherwise
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Discussion

d/4

This result verifies Kennedy (2020) conjecture that s > i/ S

necessary for achieving the oracle rate

Crucially, shows how CATE is hybrid regression/functional
» smooth nonparametric regression rates scale with d /2~

» functional estimation rates with d/4s
We showed the minimax rate for the CATE is
()
— which scales with the sum! d/2~ + d/4s

We expect similar phenomena for other hybrid creatures

> dose-response curve, counterfactual density, etc.
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Exponent in minimax rate

0.0

y/d

T
0.00

T
0.05

T
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s/d

T
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0.25

0.05

0.17

0.55

1.82

6.03

20.00
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Attainability

In the paper we construct a new estimator that attains the bound

» under some conditions on covariate density estimation

Estimator targets a 7(1 — m)-weighted local polynomial projection
of the CATE

arg min | m(x){1 - m(x)HRH(x) {7(x) — BTph(X)}z]

using a localized form of higher-order influence function methods
(Robins et al., 2008, 2017, etc.)
P estimator is localized U-statistic with localized basis kernel
P tuning parameters: h controls localization, k basis terms

P estimator pretends CATE is a polynomial locally near xg
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Intuition

Consider estimation of CATE in semiparametric model with
7(x) = 7 constant. Classic efficient estimator 7 solves:

0="P, [{A - %(X)}{Y — fio(X) — ?A}] = P, {3(Z:7))
— Robinson’s double residual regression
Improved U-statistic-based approach: 7 solves
0=P,{a(Z; ?)}—Un{(Al — 71)b(X1)"Q 7 b(Xa)(Ya — Jig2 — ?Az)}
— Robins et al. higher-order influence functions

Our method is essentially a local polynomial version of this
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Estimator #2: Undersmoothed R-Learner

The original "“R-Learner”was proposed by Robinson (1988) for
efficiently estimating a constant/parametric CATE
Simplest form: for regression function n(x) = E(Y | X = x), do

linear regression of (outcome residuals) on (treatment residuals)

Im({Y =70} ~ {A=F(X)})
Intuition: The slope estimates a weighted treatment effect, with

weights largest at Xs where we see both treated & controls

Idea: instead of linear regression, do nonparametric regression of
residuals on residuals (interacted with covariates)

» Robins (‘08), Nie & Wager (‘17), Chernozhukov et al. ('17)

» Kennedy (‘20): undersmoothed local polynomial
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More motivation & intuition

The R-learner from Kennedy (2020) can be viewed as estimating
the locally weighted projection parameter

Th(x0) = pr(x0)"0,

for coefficients # = Q1R with
Q- / () Kn(x)m(x){1 = 7(x)}p(x)™ dP(x)
R = / p()Kn()m(x){1 = (x)}7(x) dP(x),

i.e., the Kp(x)m(x)(1 — m(x))-weighted least squares projection of
the CATE 7(x) on the Legendre series p(x).
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Estimator #3: Higher-order R-learner

R-learner can be viewed as doubly robust-style estimator of 6

P suggests improving via higher-order influence functions
(Robins et al., 2008, 2017, etc.)

/\/\

Thus our proposed estimator is 7(xp) = p(x0)" Q1R fo

~

QR=U, [P(Xl)Kh(Xl){(Pal(Zl) + Pa2(Z1, Z2)Kn(X2) } }

R=1U, [p(Xl)Kh(Xl){@yl(Zl) +9y2(Z1, 22)Ki(X2) H

» uses U-statistic terms to further correct bias

» kind of like doing extra undersmoothed regressions, but
without undersmoothing estimators 7, fig directly
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Some distinctions

However our estimator is not just a “standard” higher order
estimator of the projection parameter

P it has some extra localization, which wouldn't arise if you only
cared about projection parameter

Extra localization:

» U-statistic term localized wrt both observations

~

R = Uy, [p()Kn(%0){B1(21) + ByalZ1, 22)Kn (%)}
» basis terms by(x) in ¢(Z1, Z2) are localized:

— like taking functions only near xg, stretching them out,
and approximating stretched function, to get smaller bias
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Bias & variance

Proposition

Under regularity conditions,

2s ~
B[7(x0) = () S (h/K)" 4117 = 7l llio - poll e+ 1071~ 7Y

L k A1 -1
+\/nhd{1+ W(H—HQ —Q )}

Further, if the covariate density is estimated accurately enough,

vk

2s
E[7(x) = 7(0)| S A"+ (h/k/4)" + 20
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Overall rate

2s
h + (h/kl/d> is the bias
» intuition: A7 is bias even if we observed potential outcomes

» second part is usual squared nuisance bias k=25/9 shrunk by
h?* since only care about small window

k/(nh9)? is the variance

> intuition: U-statistic in nh? observations, with kernel
depending on k-dimensional basis

Balancing gives the minimax rate!

~y/(1+2+L) d/4
R n i) ifs< 94
sup Ep|T(x0) — 7p(x0)| < Y 1+d/2y
peP n_l/(zJW) otherwise
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RMSE rate (k in n™)
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Alternative model

Assuming n(X) = E(Y | X) is 8-smooth instead of pg(X):

Theorem
Let P denote the model where

f(x) satisfies some conditions (see paper),

> 7r(x) is a-smooth,
» n(x) =E(Y | X = x) is f-smooth,
» 7(x) is y-smooth,

Then for s = (av+ 3)/2 the minimax rate is lower bounded as

V) s na < 908
« <
inf sup Ep|7T(x0) — 7p(x0)| = T+d/2y

nf sup Ep|T(x0) — 7p(%0)| 2 1/(2)

¥ PEP otherwise
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Summary

Lots of CATE estimators developed recently
» but many not very well-understood

» previously unclear how to benchmark - what is optimal?

Our contributions:
1. more flexible estimators, with stronger guarantees

2. resolution of minimax optimality story

Lots of unanswered questions & future work

» role of covariate density, other function classes

» lots to do wrt theory, methods, & application!
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Kennedy (2020): arxiv.org/abs/2004.14497

Newer one w/ Siva & Jamie & Larry: arxiv.org/abs/2203.00837

Feel free to email with any questions:
edward@stat.cmu.edu

Thank you!
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Smooth functions

In the following we illustrate result with s-smooth functions
» these are functions in the Holder class H(s)

» intuitively: smooth fns close to |s]|-order Taylor approxs

Formally #(s) contains |s]-times continuously differentiable
functions w/bdd partial derivatives, and for which

[D™F(x) = DF(X)| S [lx = X||* L
for all x, x" and m = (my, ..., my) such that >, m; = [s], where
D™ = Lmd is the multivariate partial derivative operator

ot..0

X1 Y%y

Similar results can be obtained in any model w/known MSE rates
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Oracle inequality for regression w/estimated outcomes

Underlying the DR-Learner error bound is a general oracle
inequality for regression with estimated/imputed outcomes

This setup arises in a wide variety of problems

>
>

>

V-specific CATE for V C X

regression with censored/missing outcomes (Fan & Gijbels
1994, Rubin & van der Laan 2006, Wang et al. 2010)

dose-response curve estimation (Kennedy et al. 2017),
heterogeneous effects of cts treatment

conditional IV effects
partially linear IV (Ai & Chen 2003, Newey & Powell 2003)
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Improving the DR-Learner?

Now we have general conditions for DR-Learner to be optimal

» optimal when product of nuisance MSEs is smaller order

What if this condition fails? Any hope at oracle rates?

We pursue bias reduction using undersmoothing
P classic trick in parameter estimation

P idea: estimate nuisances with too little bias, too large variance

Since DR-learner error bound involves product of MSEs,
undersmoothing won't (immediately) help

» also some additional complications involving estimating 1/x

» — considered local polynomial adaptation of R-Learner
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Estimator #2: Undersmoothed R-Learner

The original “R-Learner”was proposed by Robinson (1988) for
efficiently estimating a constant/parametric CATE

Simplest form: for regression function p(x) = E(Y | X = x), do

linear regression of (outcome residuals) on (treatment residuals)

im({Y — (X)) ~ {A=7(X)})

Intuition: The slope estimates a weighted treatment effect, with
weights largest at Xs where we see both treated & controls

Idea: instead of linear regression, do nonparametric regression of
residuals on residuals (interacted with covariates)

» Robins (‘08), Nie & Wager (‘17), Chernozhukov et al. ('17)
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|p-R-Learner error bounds

Theorem (Ip-R-Learner Error Bound)

Assume:
1. Estimator [i & observations Z are bdd, & X has bdd density.

2. PS estimates satisfy € < 7?1- <1 — € for some € > 0.

3. Eigenvalue condition on design matrices Q,Q (see paper).
4. (7j, ) satisfy Condition NE, w/bias bds holding Vx" € Bj(x)

Then, undersmoothing (7, i) and if CATE 7(x) is ~y-smooth,
7(x) — 7(x) = Op (n—"r'/(27+d) i n—2s/d)

where s = aT+/3 is avg smoothness of propensity score & regression.
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Simulations: Polynomial model

Now we study polynomial model from earlier example
X ~ Unif[-1, 1] m(x) = 0.5+ 0.4 x sign(x)

11 = po equal to piecewise polynomial from Gyorfi et al. (2002)
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Simulations: Polynomial model

Now we study polynomial model from earlier example

X ~ Unif[-1, 1] m(x) = 0.5+ 0.4 x sign(x)
11 = po equal to piecewise polynomial from Gyorfi et al. (2002)
Outcome & 2nd-stage regressions fit via smoothing.spline in R

PS fit as 7 = expit{logit(7) + €,} where ¢, ~ N(n~®, n=2%)

» allows for precise control of RMSE(7) ~ n™¢
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MSE*n

10

- =G - < o -

o~ _ [ > P,
-—o---° ©

- = Plug-in
- =+ X-Learner
—— DR-Learner

Oracle DR-Learner

7 convergence rate (o in RMSE n™)
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[[lustration

Green et al. (2003): effects of canvassing on voter turnout
> n ~19k registered voters across 6 large cities

» encouraged half to vote in local elections w/F2F contact

Data:
> X = city, party affiliation, voting history, age, family size, race
» A = whether (randomly) assigned to in-person encouragement

> Y = whether subject voted in local election or not

Used proposed DR-Learner, with K = 2 folds and random forests
> Also estimated E(Y! — Y| X7) for X; = age w/GAM
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Condition (NE, Nuisance Estimators)

Nuisance estimators (T4, Tp, i) are (a) linear smoothers

mi(x) = Z Wia(x; X{j)Ai and [i(x) = Z wig(x; X{p)Yi
ieDy, ieby,

with weights w;.(x; X{') depending on parameter k, (b) satisfying

(Z Wla X5 le ) (Z WI/B X, le 2) 5%

and (c) yielding pointwise conditional bias bounds

[Ny

B ()| X5} = 700| S k8 & [BLIK) | Xy}~ nlx)| < 6
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Conditions NE(a—c) are standard in nonparametrics

For NE(a), many popular estimators are linear smoothers

» but greedy RFs & locally adaptive methods generally excluded

NE(b) holds for kernel/local polynomial estimators with h ~ k=9,
and for many series estimators (with k = # basis terms)

» Fourier, splines, CDV wavelets, local polynomial partitioning
NE(c) holds for series and local polynomial estimators, for

example, when underlying regression is appropriately smooth
» e.g., if PS 7 is a-smooth and regression p is 3-smooth
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|p-R-Learner error bounds

Theorem (Ip-R-Learner Error Bound)
Assume:
1. Estimator i & observations Z are bdd, & X has bdd density.
. PS estimates satisfy e < 7; < 1 — € for some € > 0.

2
3. Eigenvalue condition on design matrices (3 6 (see paper).
4. (7j, ) satisfy Condition NE, w/bias bds holding Vx' € Bp(x)

Then, if ;% — 0 and the CATE 7(x) is ~y-smooth,

1 k
~ . _ v —2s/d —2a/d -
7r(x) — 7(x) = Op (h + k + k + NPT (1 + n>>

_ a+tp - . .
where s = 5 IS avg smoothness ofpropenSIty score & regression.
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Error bound discussion

The first three terms h? + k—25/d 4 k—22/d 4re the bias

» h" is the bias of an oracle with access to (m, 1)
» the other two terms are from nuisance estimation: k—25/9 is

product of 7 and 7 bias, while k=2%/9 s squared 7 bias

Heuristic: Ip-R-Learner uses least squares, so like product of
“(XTX)~L" (involving T4 & 7p) with“XTY" (involving 7, & i)

1
vV nhd

» (nh?)~1/2 is the variance of an oracle with access to (7, 1)

The next two terms

(1 + %) are the variance

» second is the product of nuisance SDs with oracle variance

» standard setup would require k log k/n — 0 for Condition NE
to hold, making nuisance variance asymptotically negligible
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Error bound discussion

Result shows that an undersmoothed |p-R-Learner can achieve
oracle rate under weaker conditions than DR-Learner bound

d/4
> o2 Tarz

» this is lower bar than s > d/4 condition for \/n-rates for ATE

P note interesting interaction with ~:
vy—o00 = s>d/4,andy—>0 = s>0

= up to 1/2 the smoothness

New paper: we prove this condition is minimal in a minimax sense!

—2s/d s slower

Note when oracle rate is not achieved, the rate n
than usual functional minimax rate n—4s/(4s+d)

> e.g., when s =d/8 itis n~1/* versus n—1/3
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Estimator #3: Higher-order R-learner

The proposed estimator is then defined as
7(x0) = p(x0)" Q'R (1)
where
Q = Uy [p(X0)Kn(X){ Ba1(22) + B2 (21, 22) Ki(X2) b X0
R = Un | p(X0)Ks(X0){ 81(22) + §y2(Z1, Z2) Kn(e) }
and
Pa1(Z) = A{A-7(X)}
Py1(Z2) ={Y — p(X)HA —7(X)}
Pa2(21, 22) = —{ A1 — 7(X1) } bu(X1)"Q 7 ba(X2) Az
Bya(Z1, 2o) = —{ A1 — 7(X1) 1 ba(X0)"Q 1 bn(Xo){ Y2 — fi(X2)}
ba(x) = h=9b{1/2 + (x — x0)/h}1(||x — xol| < h)

Q= / b(x) Kn(x)b(x)™ dE(x)
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