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Punchline

There have been many many proposals in recent years for flexible
estimation of heterogeneous causal e↵ects

I but crucial theoretical gaps remain, especially when e↵ects
have nontrivial structure (e.g., smoothness/sparsity)

I can current methods be improved? what is the best possible
error one could achieve?

The goals of this work are: flexible estimators + minimax rates

1. more flexible estimators, with better error guarantees
- (Kennedy, 2020)

2. resolve open question of minimax optimality
- (Kennedy, Balakrishnan, Robins, & Wasserman, 2022)
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Heterogeneous Causal E↵ects

Treatments/policies are often studied at population level

I i.e., the average outcome if all versus none were treated

However this can obscure important heterogeneity

I e↵ect may be zero on average - but in theory could be
benefitting some and harming others

Why should we care about heterogeneity?

I improve understanding of variation, help inform policy &
optimize treatment decisions

I critical across medicine & social sciences
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Get out the vote

Voters are older, wealthier, and whiter than non-voters
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Setup

Consider the classic causal inference data structure:

I covariates X 2
d , treatment A 2 {0, 1}, outcome Y 2

e.g., in GOTV example:

I X = city, party a�liation, voting history, age, family size, race

I A = whether contacted by canvasser

I Y = whether subject voted in local election or not

Let Y a denote counterfactual outcome under treatment A = a

I e.g., Y 1 = whether would’ve voted if contacted,Y 0 = if not
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Targets & identification

The average treatment e↵ect (ATE) is

(Y 1
� Y 0)

i.e., the mean outcome if all versus none were treated

Heterogeneous e↵ect estimation =) conditional ATE (CATE)

⌧(x) = (Y 1
� Y 0

| X = x)

Under standard no unmeasured confounding assumptions we have

(Y a
| X = x) = (Y | X = x ,A = a) ⌘ µa(x)

and so
⌧(x) = µ1(x)� µ0(x)
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Key Idea

How to estimate ⌧(x) = µ1(x)� µ0(x)? Simplest just plugs in

b⌧(x) = bµ1(x)� bµ0(x)

However this can be highly suboptimal (MSE too large)

Key idea: complexity of ⌧(x) can be very di↵erent from µa(x)

I µa is a natural outcome process that may be very complex

I CATE ⌧(x) could very well be constant or even null!

In general ⌧(x) has to be at least as smooth/sparse as µa

I but could be much more smooth/sparse
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Benchmarking optimality

So plug-in will generally be deficient/suboptimal

I what’s the best performance we can hope for?

First simple approach: suppose we regressed (Y 1
� Y 0) on X

I this is an oracle estimator - it knows potential outcomes

I call this oracle e⌧⇤(x)

Then if ⌧(x) is s-sparse, we might hope for

RMSE
n
b⌧(x)

o
⇠ RMSE

n
e⌧⇤(x)

o
⇠

r
s log d

n

Or if ⌧(x) is s-smooth, we might hope for

RMSE
n
b⌧(x)

o
⇠ RMSE

n
e⌧⇤(x)

o
⇠ n�

1
2+d/s
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What happens with ATE?

How can we exploit any potential simplicity in ⌧ , like oracle?

I can take intuition from ATE case (CATE ⇡ ATE in small bin)

For estimating ATEs, a lot is known (but not all!)

I doubly robust (i.e., semiparametric / targeted / double ML)
methods can be e�cient in large nonparametric models

DR intuition: correct bias of plug-in by estimating & incorporating
propensity scores ⇡(x) = (A = 1 | X = x)

DR Est = Avg( estimated pseudo-outcome )
DR Est = Avg( regression prediction + IPW weighted residuals )

b ate = n


bµ1(X )� bµ0(X ) +

A� b⇡(X )

b⇡(X ){1� b⇡(X )}

n
Y � bµA(X )

o�
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DR-Learner

Intuition: for ATEs we average, for CATEs let’s regress
I we call this “DR-Learner”
I first proposed by van der Laan (2005, 2013), recently

rediscovered, but little in the way of general analysis

Algorithm (DR-Learner)

Step 1. Nuisance training:
Construct estimates (b⇡, bµ0, bµ1) of (⇡, µ0, µ1) using Dn

1 .

Step 2. Pseudo-outcome regression: Construct the pseudo-outcome

b'(Z ) = bµ1(X )� bµ0(X ) +
A� b⇡(X )

b⇡(X ){1� b⇡(X )}

n
Y � bµA(X )

o

and regress it on covariates X in the test sample Dn
2 , yielding

b⌧dr (x) = b
n{b'(Z ) | X = x}.
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Some DR-Learner history

First proposed by van der Laan (2005, 2013)

I but did not give specific error bounds

Kernel & series versions rederived in recent years

I Lee et al (2017), Semenova & Chernozhukov (2017), Zimmert
& Lechner (2019), Fan et al (2019)

I but: tailored to particular 2nd-stage methods

I also: used restrictive assumptions on nuisance estimators
and/or didn’t allow simpler CATE

Foster & Syrgkanis (2019) studied ERM version

I but: error bounds were not doubly robust, also global & loose
relative to oracle
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DR-Learner

In particular, these previous analyses obtain rates like:

RMSE
⇣
b⌧
⌘
⇠ RMSE

⇣
e⌧⇤
⌘
+
p

kn
n
RMSE

⇣
b⇡
⌘
⇥ RMSE

⇣
bµa

⌘o

with kn ! 1, or

RMSE
⇣
b⌧
⌘
⇠ RMSE

⇣
e⌧⇤
⌘
+ RMSE

⇣
b⇡
⌘
2 + RMSE

⇣
bµa

⌘
2

Q: What can we say about the DR-Learner if we are agnostic
about what regression tools we use in the 1st & 2nd stage?

I Can these conditions for oracle optimality be improved?
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DR-Learner error bound

Theorem (DR-Learner Master Theorem)

Assume bn is stable and b' is consistent.

Denote oracle estimator by e⌧(x) = b
n(Y 1

� Y 0
| X ), with risk

R⇤(x) = MSE
⇣
e⌧(x)

⌘
= [{e⌧(x)� ⌧(x)}2].

Then

b⌧dr (x) = e⌧(x) + O
⇣
b
n{
bb(X ) | X = x}

⌘
+ o

⇣p
R⇤(x)

⌘
.

for “doubly robust” bias term

bb(x) =
1X

a=0

n
b⇡(x)� ⇡(x)

on
bµa(x)� µa(x)

o

ab⇡(x) + (1� a)(1� b⇡(x))
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Stability

Definition
The estimator bn is stable (with respect to distance d) if

b
n{
bf (Z ) | X = x}� b

n{f (Z ) | X = x}� b
n{
bb(X ) | X = x}

RMSE ⇤
p
! 0

whenever d(bf , f ) p
! 0, for

I bb(x) = {bf (Z )� f (Z ) | Dn,X = x} the conditional bias of bf ,

I RMSE ⇤2 =

✓h
b
n{f (Z ) | X = x}� {f (Z ) | X = x}

i2◆
.

Theorem 1 of Kennedy (2020): Linear smoothers are stable with
respect to a weighted L2( ) norm.
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Discussion: DR-Learner error bound

This is a nearly model-free, method-agnostic error bound

I shows DR-Learner error can’t deviate from oracle by more
than product of nuisance errors

I essentially a CATE analog of DR results for ATEs

I allows faster rates for CATE even w/slower nuisance rates

I gives smaller risk vs. previous method-specific results

This result is very general, allowing generic methods/assumptions

I now we specialize to classic Hölder s-smooth functions

I i.e., all derivatives up to s � 1 bounded, & highest continuous
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DR-Learner error bounds: Smoothness

Corollary (DR-Learner Under Smoothness)

Suppose assumptions of DR-Learner Theorem hold, and that:

1. ⇡ is ↵-smooth, and estimated with MSE n�1/(2+ d
↵).

2. µa are �-smooth, and estimated with MSE n
�1/

⇣
2+ d

�

⌘

.

If CATE ⌧ is �-smooth and bn is minimax optimal, then

b⌧dr (x)� ⌧(x) = O

✓
n
�1/

⇣
2+ d

�

⌘

+ n�1/(2+ d
↵)n

�1/
⇣
2+ d

�

⌘◆

and thus the DR-Learner achieves oracle rate if

p
↵� �

d/2q
1 + d

�

�
1 + d

2s

�

for s the harmonic mean of ↵ and �.
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Discussion

Previous result shows DR-Learner can adapt to CATE smoothness

I even when propensity score & regressions are less smooth

I gives su�cient conditions for oracle rate n��/(2�+d)

Analogous condition for DR estimator of ATE:
p
↵� � d/2

I as CATE gets more smooth, these conditions align

Term dividing d/2 is “lowered bar” for optimal estimation due to
oracle rate being slower than root-n

I arose in dose-response but missed in recent CATE papers

See paper for result for generic regression w/estimated outcomes
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Minimax optimality

Q: Are these MSE rates optimal? Can they be improved?

A natural way to characterize optimality is via the minimax rate

Rn = inf
b⌧

sup
P2P

P |b⌧(x)� ⌧P(x)|

i.e., the best possible (worst-case) error, across all estimators

Minimax rates are well-understood in many problems:

I smooth nonparametric regression: n�1/(2+ d
s )

I smooth functional estimation: max{n�1/(1+ d
4s ), 1/

p
n}

I sparse linear regression:
p
s log d/n

I density estimation w/measurement error: (log n)�s
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Minimax optimality

Minimax rates have crucial implications, practical & theoretical

I gives benchmark for best possible performance

I precisely illustrates fundamental limits / statistical di�culty

Main idea in deriving lower bounds:

I construct distributions so similar they’re indistinguishable

I but for which parameter is maximally separated

=) then no estimator can have error smaller than separation

For nonlinear functionals, mixture distributions are required
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Minimax optimality

Three ingredients in deriving minimax lower bound:

1. pair of mixture distributions

2. distance between their n-fold products (ideally small)

3. separation of parameter (ideally large)

Lemma (Tsybakov)

Let P�,Q� 2 P and let $ be a prior distribution over �. If

H2

✓Z
Pn
� d$(�),

Z
Qn
� d$(�)

◆
 ↵ < 2

and | (P�)�  (Q�)| � s > 0, then

Rn = inf
b 
sup
P2P

P

��� b �  (P)
��� �

|s|

4

⇢
1�

r
↵
⇣
1�

↵

4

⌘�
.
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Construction

Main idea:

I perturb CATE with a flat-top bump at x0
I perturb PS ⇡ and regression µ0, but only locally near x0
I only get observations at flat parts of bumps

Also: less smooth nuisance also perturbed under both P� and Q�

This is like a combination of lower bound constructions for

I nonparametric regression (cf. Tsybakov 2009)

I functional estimation (Birge & Massart ‘95, Robins et al. ‘09)

30 / 47



Null P�

x0 − h 2 x0 x0 + h 2

0
hγ

0.
5
−
(h

k)
β

0.
5

0.
5
+
(h

k)
β

x0 − h 2 + h k x0 + h 2 − h k
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Alt. Q�

x0 − h 2 x0 x0 + h 2

0
0.
5
−
(h

k)
β

0.
5

0.
5
+
(h

k)
α

x0 − h 2 + h k x0 + h 2 − h k
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Hellinger distance

In general, the distance between mixtures can be complicated

I we give a local adaptation of a nice lemma from Robins et al.
(2009) to relate to simple posteriors over 1 observation

Proposition
Let s ⌘ ↵+�

2 . Under some conditions we have

H2

✓Z
Pn
� d$(�),

Z
Qn
� d$(�)

◆
.
✓
n2hd

k/hd

◆⇣
k/hd

⌘�4s/d
.

Now we choose h� ⇠ (h/k1/d)2s and k ⇠ n(d/2s�d/�)/(1+d/2�+d/4s)

to ensure the Hellinger distance is bounded (e.g., less than one)
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Overall minimax rate

Since the separation in the CATE is h� , this implies the following
minimax lower bound:

Theorem
Let P denote the model where

I f (x) satisfies some conditions (see paper),

I ⇡(x) is ↵-smooth,

I µ0(x) is �-smooth,

I ⌧(x) is �-smooth,

Then for s ⌘ (↵+ �)/2 the minimax rate is lower bounded as

inf
b 
sup
P2P

P |b⌧(x0)� ⌧P(x0)| &

8
<

:
n
�1/

⇣
1+ d

2�+
d
4s

⌘

if s < d/4
1+d/2�

n
�1/

⇣
2+ d

�

⌘

otherwise

34 / 47



Discussion

This result verifies Kennedy (2020) conjecture that s � d/4
1+d/2� is

necessary for achieving the oracle rate

Crucially, shows how CATE is hybrid regression/functional

I smooth nonparametric regression rates scale with d/2�

I functional estimation rates with d/4s

We showed the minimax rate for the CATE is

n
�1/

⇣
1+ d

2�+
d
4s

⌘

! which scales with the sum! d/2� + d/4s

We expect similar phenomena for other hybrid creatures

I dose-response curve, counterfactual density, etc.
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Attainability

In the paper we construct a new estimator that attains the bound

I under some conditions on covariate density estimation

Estimator targets a ⇡(1� ⇡)-weighted local polynomial projection
of the CATE

argmin
�


⇡(x){1� ⇡(x)}Kh(x)

n
⌧(x)� �T⇢h(x)

o2
�

using a localized form of higher-order influence function methods
(Robins et al., 2008, 2017, etc.)

I estimator is localized U-statistic with localized basis kernel

I tuning parameters: h controls localization, k basis terms

I estimator pretends CATE is a polynomial locally near x0
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Intuition

Consider estimation of CATE in semiparametric model with
⌧(x) = ⌧ constant. Classic e�cient estimator b⌧ solves:

0 = n

hn
A� b⇡(X )

on
Y � bµ0(X )� b⌧A

oi
⌘ n{b'(Z ; b⌧)}

! Robinson’s double residual regression

Improved U-statistic-based approach: b⌧ solves

0 = n{b'(Z ; b⌧)}� n

n
(A1 � b⇡1)b(X1)

T⌦�1b(X2)(Y2 � bµ02 � b⌧A2)
o

! Robins et al. higher-order influence functions

Our method is essentially a local polynomial version of this

38 / 47



Estimator #2: Undersmoothed R-Learner

The original “R-Learner”was proposed by Robinson (1988) for
e�ciently estimating a constant/parametric CATE

Simplest form: for regression function ⌘(x) = (Y | X = x), do

linear regression of (outcome residuals) on (treatment residuals)

lm
⇣
{Y � b⌘(X )} ⇠ {A� b⇡(X )}

⌘

Intuition: The slope estimates a weighted treatment e↵ect, with
weights largest at X s where we see both treated & controls

Idea: instead of linear regression, do nonparametric regression of
residuals on residuals (interacted with covariates)

I Robins (‘08), Nie & Wager (‘17), Chernozhukov et al. (‘17)

I Kennedy (‘20): undersmoothed local polynomial
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More motivation & intuition

The R-learner from Kennedy (2020) can be viewed as estimating
the locally weighted projection parameter

⌧h(x0) = ⇢h(x0)
T✓,

for coe�cients ✓ = Q�1R with

Q =

Z
⇢(x)Kh(x)⇡(x){1� ⇡(x)}⇢(x)T d (x)

R =

Z
⇢(x)Kh(x)⇡(x){1� ⇡(x)}⌧(x) d (x),

i.e., the Kh(x)⇡(x)(1� ⇡(x))-weighted least squares projection of
the CATE ⌧(x) on the Legendre series ⇢(x).
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Estimator #3: Higher-order R-learner

R-learner can be viewed as doubly robust-style estimator of ✓

I suggests improving via higher-order influence functions
(Robins et al., 2008, 2017, etc.)

Thus our proposed estimator is b⌧(x0) = ⇢(x0)T bQ�1 bR for

bQ = n

h
⇢(X1)Kh(X1)

n
b'a1(Z1) + b'a2(Z1,Z2)Kh(X2)

o
⇢(X1)

T
i

bR = n

h
⇢(X1)Kh(X1)

n
b'y1(Z1) + b'y2(Z1,Z2)Kh(X2)

oi

I uses U-statistic terms to further correct bias

I kind of like doing extra undersmoothed regressions, but
without undersmoothing estimators b⇡, bµ0 directly
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Some distinctions

However our estimator is not just a “standard” higher order
estimator of the projection parameter

I it has some extra localization, which wouldn’t arise if you only
cared about projection parameter

Extra localization:

I U-statistic term localized wrt both observations

bR = n

h
⇢(X1)Kh(X1)

n
b'y1(Z1) + b'y2(Z1,Z2)Kh(X2)

oi

I basis terms bh(x) in b'(Z1,Z2) are localized:
! like taking functions only near x0, stretching them out,

and approximating stretched function, to get smaller bias
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Bias & variance

Proposition
Under regularity conditions,

|b⌧(x0)� ⌧h(x0)| .
⇣
h/k1/d

⌘2s
+ kb⇡ � ⇡kF⇤kbµ0 � µ0kF⇤kb⌦�1

� ⌦�1
k

+

r
1

nhd

(
1 +

r
k

nhd

⇣
1 + kb⌦�1

� ⌦�1
k

⌘)

Further, if the covariate density is estimated accurately enough,

|b⌧(x0)� ⌧(x0)| . h� +
⇣
h/k1/d

⌘2s
+

p
k

nhd
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Overall rate

h� +
⇣
h/k1/d

⌘2s
is the bias

I intuition: h� is bias even if we observed potential outcomes

I second part is usual squared nuisance bias k�2s/d , shrunk by
h2s since only care about small window

k/(nhd)2 is the variance

I intuition: U-statistic in nhd observations, with kernel
depending on k-dimensional basis

Balancing gives the minimax rate!

sup
P2P

P |b⌧(x0)� ⌧P(x0)| .

8
<

:
n
�1/

⇣
1+ d

2�+
d
4s

⌘

if s < d/4
1+d/2�

n
�1/

⇣
2+ d

�

⌘

otherwise
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Alternative model

Assuming ⌘(X ) = (Y | X ) is �-smooth instead of µ0(X ):

Theorem
Let P denote the model where

I f (x) satisfies some conditions (see paper),

I ⇡(x) is ↵-smooth,

I ⌘(x) = (Y | X = x) is �-smooth,

I ⌧(x) is �-smooth,

Then for s ⌘ (↵+ �)/2 the minimax rate is lower bounded as

inf
b 
sup
P2P

P |b⌧(x0)� ⌧P(x0)| &

8
<

:
n
�1/

⇣
1+ d

2�+
d

4(s^↵)

⌘

if s ^ ↵ < d/4
1+d/2�

n
�1/

⇣
2+ d

�

⌘

otherwise
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Summary

Lots of CATE estimators developed recently

I but many not very well-understood

I previously unclear how to benchmark - what is optimal?

Our contributions:

1. more flexible estimators, with stronger guarantees

2. resolution of minimax optimality story

Lots of unanswered questions & future work

I role of covariate density, other function classes

I lots to do wrt theory, methods, & application!
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Kennedy (2020): arxiv.org/abs/2004.14497

Newer one w/ Siva & Jamie & Larry: arxiv.org/abs/2203.00837

Feel free to email with any questions:
edward@stat.cmu.edu

Thank you!
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Smooth functions

In the following we illustrate result with s-smooth functions

I these are functions in the Hölder class H(s)

I intuitively: smooth fns close to bsc-order Taylor approxs

Formally H(s) contains bsc-times continuously di↵erentiable
functions w/bdd partial derivatives, and for which

|Dmf (x)� Dmf (x 0)| . kx � x 0ks�bsc

for all x , x 0 and m = (m1, ...,md) such that
P

j mj = bsc, where

Dm = @bsc

@
m1
x1

...@
md
xd

is the multivariate partial derivative operator

Similar results can be obtained in any model w/known MSE rates
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Oracle inequality for regression w/estimated outcomes

Underlying the DR-Learner error bound is a general oracle
inequality for regression with estimated/imputed outcomes

This setup arises in a wide variety of problems

I V -specific CATE for V ⇢ X

I regression with censored/missing outcomes (Fan & Gijbels
1994, Rubin & van der Laan 2006, Wang et al. 2010)

I dose-response curve estimation (Kennedy et al. 2017),
heterogeneous e↵ects of cts treatment

I conditional IV e↵ects

I partially linear IV (Ai & Chen 2003, Newey & Powell 2003)

49 / 47



Improving the DR-Learner?

Now we have general conditions for DR-Learner to be optimal

I optimal when product of nuisance MSEs is smaller order

What if this condition fails? Any hope at oracle rates?

We pursue bias reduction using undersmoothing

I classic trick in parameter estimation

I idea: estimate nuisances with too little bias, too large variance

Since DR-learner error bound involves product of MSEs,
undersmoothing won’t (immediately) help

I also some additional complications involving estimating 1/⇡

I =) considered local polynomial adaptation of R-Learner
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Estimator #2: Undersmoothed R-Learner

The original “R-Learner”was proposed by Robinson (1988) for
e�ciently estimating a constant/parametric CATE

Simplest form: for regression function µ(x) = (Y | X = x), do

linear regression of (outcome residuals) on (treatment residuals)

lm
⇣
{Y � bµ(X )} ⇠ {A� b⇡(X )}

⌘

Intuition: The slope estimates a weighted treatment e↵ect, with
weights largest at X s where we see both treated & controls

Idea: instead of linear regression, do nonparametric regression of
residuals on residuals (interacted with covariates)

I Robins (‘08), Nie & Wager (‘17), Chernozhukov et al. (‘17)
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lp-R-Learner error bounds

Theorem (lp-R-Learner Error Bound)

Assume:

1. Estimator bµ & observations Z are bdd, & X has bdd density.

2. PS estimates satisfy ✏  b⇡j  1� ✏ for some ✏ > 0.

3. Eigenvalue condition on design matrices bQ, eQ (see paper).

4. (b⇡j , bµ) satisfy Condition NE, w/bias bds holding 8x 0 2 Bh(x)

Then, undersmoothing (b⇡, bµ) and if CATE ⌧(x) is �-smooth,

b⌧(x)� ⌧(x) = O
⇣
n��/(2�+d) + n�2s/d

⌘

where s = ↵+�
2 is avg smoothness of propensity score & regression.
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Simulations: Polynomial model

Now we study polynomial model from earlier example

X ⇠ Unif[�1, 1] ⇡(x) = 0.5 + 0.4⇥ sign(x)

µ1 = µ0 equal to piecewise polynomial from Gyorfi et al. (2002)

Outcome & 2nd-stage regressions fit via smoothing.spline in R

PS fit as b⇡ = expit{logit(⇡) + ✏n} where ✏n ⇠ N(n�↵, n�2↵)

allows for precise control of RMSE(b⇡) ⇠ n�↵
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Illustration

Green et al. (2003): e↵ects of canvassing on voter turnout

I n ⇡19k registered voters across 6 large cities

I encouraged half to vote in local elections w/F2F contact

Data:

I X = city, party a�liation, voting history, age, family size, race

I A = whether (randomly) assigned to in-person encouragement

I Y = whether subject voted in local election or not

Used proposed DR-Learner, with K = 2 folds and random forests

I Also estimated (Y 1
� Y 0

| X1) for X1 = age w/GAM
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Histogram of CATE estimates
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Condition (NE, Nuisance Estimators)

Nuisance estimators (b⇡a, b⇡b, bµ) are (a) linear smoothers

b⇡j(x) =
X

i2Dn
1j

wi↵(x ;X
n
1j)Ai and bµ(x) =

X

i2Dn
1b

wi�(x ;X
n
1b)Yi

with weights wi ·(x ;X n
1·) depending on parameter k , (b) satisfying

 
nX

i=1

wi↵(x ;X
n
1j)

2

!
_

 
nX

i=1

wi�(x ;X
n
1j)

2

!
. k

n

and (c) yielding pointwise conditional bias bounds

��� {b⇡j(x) | X n
1j}� ⇡(x)

��� . k�
↵
d &

��� {bµ(x) | X n
1b}� µ(x)

��� . k�
�
d
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Conditions NE(a–c) are standard in nonparametrics

For NE(a), many popular estimators are linear smoothers

I but greedy RFs & locally adaptive methods generally excluded

NE(b) holds for kernel/local polynomial estimators with h ⇠ k�d ,
and for many series estimators (with k = # basis terms)

I Fourier, splines, CDV wavelets, local polynomial partitioning

NE(c) holds for series and local polynomial estimators, for
example, when underlying regression is appropriately smooth

I e.g., if PS ⇡ is ↵-smooth and regression µ is �-smooth
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lp-R-Learner error bounds

Theorem (lp-R-Learner Error Bound)

Assume:

1. Estimator bµ & observations Z are bdd, & X has bdd density.

2. PS estimates satisfy ✏  b⇡j  1� ✏ for some ✏ > 0.

3. Eigenvalue condition on design matrices bQ, eQ (see paper).

4. (b⇡j , bµ) satisfy Condition NE, w/bias bds holding 8x 0 2 Bh(x)

Then, if k/np
nhd

! 0 and the CATE ⌧(x) is �-smooth,

b⌧r (x)� ⌧(x) = O

✓
h� + k�2s/d + k�2↵/d +

1
p

nhd

✓
1 +

k

n

◆◆

where s = ↵+�
2 is avg smoothness of propensity score & regression.
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Error bound discussion

The first three terms h� + k�2s/d + k�2↵/d are the bias

I h� is the bias of an oracle with access to (⇡, µ)

I the other two terms are from nuisance estimation: k�2s/d is
product of b⇡ and bµ bias, while k�2↵/d is squared b⇡ bias

Heuristic: lp-R-Learner uses least squares, so like product of
“(XTX )�1” (involving b⇡a & b⇡b) with“XTY ” (involving b⇡a & bµ)

The next two terms 1p
nhd

�
1 + k

n

�
are the variance

I (nhd)�1/2 is the variance of an oracle with access to (⇡, µ)

I second is the product of nuisance SDs with oracle variance

I standard setup would require k log k/n ! 0 for Condition NE
to hold, making nuisance variance asymptotically negligible
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Error bound discussion

Result shows that an undersmoothed lp-R-Learner can achieve
oracle rate under weaker conditions than DR-Learner bound

I s � d/4
1+d/2� =) up to 1/2 the smoothness

I this is lower bar than s � d/4 condition for
p
n-rates for ATE

I note interesting interaction with �:
� ! 1 =) s � d/4, and � ! 0 =) s � 0

New paper: we prove this condition is minimal in a minimax sense!

Note when oracle rate is not achieved, the rate n�2s/d is slower
than usual functional minimax rate n�4s/(4s+d)

I e.g., when s = d/8 it is n�1/4 versus n�1/3
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Estimator #3: Higher-order R-learner

The proposed estimator is then defined as

b⌧(x0) = ⇢(x0)
T bQ�1 bR (1)

where

bQ = n

h
⇢(X1)Kh(X1)

n
b'a1(Z1) + b'a2(Z1,Z2)Kh(X2)

o
⇢(X1)

T
i

bR = n

h
⇢(X1)Kh(X1)

n
b'y1(Z1) + b'y2(Z1,Z2)Kh(X2)

oi

and

b'a1(Z ) = A{A� b⇡(X )}

b'y1(Z ) = {Y � bµ(X )}{A� b⇡(X )}

b'a2(Z1,Z2) = �{A1 � b⇡(X1)}bh(X1)
Tb⌦�1bh(X2)A2

b'y2(Z1,Z2) = �{A1 � b⇡(X1)}bh(X1)
Tb⌦�1bh(X2){Y2 � bµ(X2)}

bh(x) = h�db{1/2 + (x � x0)/h} (kx � x0k  h)

b⌦ =

Z
bh(x)Kh(x)bh(x)

T d bF (x)

for b an orthonormal basis of dimension k (e.g., spline or wavelet
basis). The nuisance estimators ( bF , b⇡, bµ) are constructed from a
separate training sample Dn, independent of the sample on which

n operates.
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