Fundamental limits of structure-agnostic functional estimation

Edward Kennedy

Siva Balakrishnan & Larry Wasserman

Department of Statistics & Data Science Carnegie Mellon University

ACIC, 24 May 2023

Punchline

Optimality & fundamental statistical limits in causal inference

- much is unknown, many open problems
- e.g., what's best possible performance of effect estimator?

To shed some light on this, in this work we give:

- new model & framework for black-box functional estimation
- ▶ <u>new minimax rates</u> for functionals/parameters in Gaussian sequence model, density functionals, & <u>causal inference</u>

Causal inference & functional estimation

After identification, many causal problems equate to statistical functional/parameter estimation

E.g., denote covariates X, treatment A, outcome Y, and

$$\pi(x) = \mathbb{P}(A = 1 \mid X = x), \quad \mu_1(x) = \mathbb{E}(Y \mid X = x, A = 1)$$

then under consistency / positivity / no unmeasured confounding:

$$\mathbb{E}(Y^1) = \mathbb{E}\Big\{\mu_1(X)\Big\} = \mathbb{E}\left\{\frac{AY}{\pi(X)}\right\}$$

Goal is <u>not</u> to estimate whole distribution P, or even (π, μ_1) , well

- instead, we want accurate estimates of causal parameter
- similar to other functional estimation settings outside causal

Expected conditional covariance

Here we focus on the expected conditional covariance parameter

$$\psi = \mathbb{E}\{\mathsf{cov}(A, Y \mid X)\} = \mathbb{E}\Big\{AY - \pi(X)\mu(X)\Big\}$$

for $\mu(x) = \mathbb{E}(Y \mid X = x)$, which arises in many diverse settings:

- constant effect estimators under misspecification
- overlap weights / weighted effects (Crump et al. 2006)
- ▶ independence testing (Shah & Peters 2020)
- causal influence (Diaz 2022)
- marginal incremental effects (Zhou & Opacic 2022)

Some estimators

A plug-in estimator:

$$\widehat{\psi}_{pi} = \mathbb{P}_n \Big\{ AY - \widehat{\pi}(X) \widehat{\mu}(X) \Big\}$$

A doubly-robust / first-order estimator (e.g., Robinson 1988):

$$\widehat{\psi}_{dr} = \mathbb{P}_n \left[\left\{ A - \widehat{\pi}(X) \right\} \left\{ Y - \widehat{\mu}(X) \right\} \right]$$

A higher-order estimator (Robins et al. 2008):

$$\widehat{\psi}_{hi} = \widehat{\psi}_{dr} - \frac{1}{n(n-1)} \sum_{i \neq i} \left\{ A_i - \widehat{\pi}(X_i) \right\} K_h(X_i, X_j) \left\{ Y_j - \widehat{\mu}(X_j) \right\}$$

How should we compare these & similar estimators?

ightharpoonup one option: Holder smoothness classes ($\approx s$ bdd derivatives)

Dimension d=10

Black-box / structure-agnostic viewpoint

Regardless of smoothness, the doubly robust estimator satisfies

$$\mathbb{E}|\widehat{\psi}_{dr} - \psi| \lesssim \frac{1}{\sqrt{n}} + \|\widehat{\pi} - \pi\| \|\widehat{\mu} - \mu\|$$

and this error can be small under sparsity, bdd variation, etc.

This motivates black-box approach we often see in practice:

- \blacktriangleright throw kitchen sink at estimating (π, μ)
- put into plug-in/DR estimator, hoping rates "fast enough"

But this approach is sub-optimal in smoothness classes

- need more complicated higher-order estimators
- "structure-agnostic" guarantees not so beneficial here

Q: Can we formalize black-box model? What is optimal there?

Minimax optimality

A natural way to characterize optimality is via the minimax rate

$$R_n = \inf_{\widehat{\psi}} \sup_{P \in \mathcal{P}} \mathbb{E}_P |\widehat{\psi} - \psi_P|$$

i.e., the best possible (worst-case) error, across all estimators

Minimax rates have crucial implications, practical & theoretical

- gives benchmark for best possible performance
- precisely illustrates fundamental limits / statistical difficulty

Minimax rates are well-understood in many problems:

- ▶ smooth nonparametric regression: $n^{-1/(2+\frac{d}{s})}$
- ▶ smooth functional estimation: $\max\{n^{-1/\left(1+\frac{d}{4s}\right)}, 1/\sqrt{n}\}$
- ▶ density estimation w/measurement error: $(\log n)^{-s}$

A new minimax framework

We propose a new black-box model for minimax analysis

we only assume pilot propensity $\widehat{\pi}$ and regression $\widehat{\mu}$ estimators are accurate in an $L_2(P)$ sense, nothing else

Our model is:

$$\mathcal{P}(r_n, s_n) = \left\{ \text{all distributions } P : \|\widehat{\pi} - \pi\| \lesssim r_n, \ \|\widehat{\mu} - \mu\| \lesssim s_n \right\}$$

(along with some boundedness conditions)

We do not assume (r_n, s_n) are known to the statistician

 \triangleright so estimators in this model will be adaptive to (r_n, s_n)

Now the formal question is

$$\inf_{\widehat{\psi}} \sup_{P \in \mathcal{P}(r_n, s_n)} \mathbb{E}_P |\widehat{\psi} - \psi_P| \; \asymp ???$$

A new minimax framework

Some notable distinctions vs. usual (e.g., smooth/sparse) models:

We impose structure implicitly via accuracy in pilot estimators

ightharpoonup assumption strength depends on the accuracy (r_n, s_n)

Following popular practice, we take conditional perspective

- half sample to estimate nuisances, rest to estimate functional
- we treat pilot estimates $(\widehat{\pi}, \widehat{\mu})$ as fixed
- ▶ Bickel & Ritov (1988), Robins et al (2008), Chernuzhukov et al (2018), Foster & Syrgkanis (2019), etc.

Local minimax flavor

riangleright can think of this as a local minimax problem, localized around $(\widehat{\pi}, \widehat{\mu})$, rather than around true parameter (π, μ)

The main result

Theorem

Let $\mathcal{P}(r_n, s_n)$ denote the model where

$$\|\widehat{\pi} - \pi\| \lesssim r_n$$
 and $\|\widehat{\mu} - \mu\| \lesssim s_n$.

Then the minimax rate is

$$\inf_{\widehat{\psi}} \sup_{P \in \mathcal{P}(r_n, s_n)} \mathbb{E}_P |\widehat{\psi} - \psi_P| \; \asymp \; \frac{1}{\sqrt{n}} + r_n \times s_n$$

(see paper for similar sequence model / density functional results).

→ Here doubly robust estimator can't be meaningfully improved!

Minimax lower bound

Intuition for minimax lower bounds:

- ► construct distributions so similar they're indistinguishable
- but for which parameter is maximally separated
- ⇒ then *no estimator* can have error smaller than separation

For nonlinear functionals, mixture distributions are required

Three ingredients in deriving minimax lower bound:

- 1. pair of distributions (at least one mixture)
- 2. separation of parameter (ideally large)
- 3. distance between their *n*-fold products (ideally small)

Construction

Intuition: perturbed nuisances need not be smooth

- can make them essentially impossible to estimate
- then only information comes from pilot estimates

Pair of distributions:

- under null P, take (π, μ) to be given estimates $(\widehat{\pi}, \widehat{\mu})$
- under alternative Q_{λ} , add k bumps w/random direction λ , and height approx. equal to r_n and s_n (for π, μ , resp.)

Null P

Alt. Q_{λ}

Construction

Intuition: perturbed nuisances need not be smooth

- can make them essentially impossible to estimate
- then only information comes from pilot estimates

Pair of distributions:

- under null P, take (π, μ) to be given estimates $(\widehat{\pi}, \widehat{\mu})$
- under alternative Q_{λ} , add k bumps w/random direction λ , and height approx. equal to r_n and s_n (for π, μ , resp.)

Functional separation:

$$\psi(P) = \int \widehat{\pi}\widehat{\mu} \; , \; \; \psi(Q_{\lambda}) - \psi(P) \; \gtrsim \; r_{\mathsf{n}} \times s_{\mathsf{n}}$$

Hellinger distance: $H^2 \lesssim \frac{n^2}{k} \left(r_n^4 + s_n^4 \right)$

Some implications

- ► There's a strong sense in which popular DR/TMLE/DML -style estimators are optimal, from black-box perspective
 - ightharpoonup even when nuisances estimated at slower than $n^{-1/4}$ rates
- rate benefits from higher-order estimators will necessarily require more assumptions
- "doubly robust inference" methods, which yield root-n rates as long as either nuisance is converging at $n^{-1/4}$, are necessarily using more assumptions (sparse glm, smoothness)

Summary

Still a long way to go understanding optimality in causal inference

Our contributions here:

- 1. new black-box framework, giving complementary perspective
- new structure-agnostic minimax rates for functional estimation in sequence model, density/causal parameters

Lots of unanswered questions & future work:

other functionals, classes of functionals; adaptivity;
 other models; and more

On arxiv now! → arxiv.org/abs/2305.041167

The Fundamental Limits of Structure-Agnostic Functional Estimation

Sivaraman Balakrishnan[†], Edward Kennedy[†] and Larry Wasserman[†]

Department of Statistics and Data Science[†]
Carnegie Mellon University,
Pittsburgh, PA 15213.

{siva,edward,larry}@stat.cmu.edu

Feel free to email with any questions: edward@stat.cmu.edu

Thank you!