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Punchline

Optimality & fundamental statistical limits in causal inference

I much is unknown, many open problems

I e.g., what’s best possible performance of e↵ect estimator?

To shed some light on this, in this work we give:

I new model & framework for black-box functional estimation

I new minimax rates for functionals/parameters in Gaussian
sequence model, density functionals, & causal inference
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Causal inference & functional estimation

After identification, many causal problems equate to statistical
functional/parameter estimation

E.g., denote covariates X , treatment A, outcome Y , and

⇡(x) = (A = 1 | X = x), µ1(x) = (Y | X = x ,A = 1)

then under consistency / positivity / no unmeasured confounding:

(Y 1) =
n
µ1(X )

o
=

⇢
AY

⇡(X )

�

Goal is not to estimate whole distribution P , or even (⇡, µ1), well

I instead, we want accurate estimates of causal parameter

I similar to other functional estimation settings outside causal
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Expected conditional covariance

Here we focus on the expected conditional covariance parameter

 = {cov(A,Y | X )} =
n
AY � ⇡(X )µ(X )

o

for µ(x) = (Y | X = x), which arises in many diverse settings:

I constant e↵ect estimators under misspecification

I overlap weights / weighted e↵ects (Crump et al. 2006)

I independence testing (Shah & Peters 2020)

I causal influence (Diaz 2022)

I marginal incremental e↵ects (Zhou & Opacic 2022)
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Some estimators

A plug-in estimator:

b pi = n

n
AY � b⇡(X )bµ(X )

o

A doubly-robust / first-order estimator (e.g., Robinson 1988):

b dr = n

hn
A� b⇡(X )

on
Y � bµ(X )

oi

A higher-order estimator (Robins et al. 2008):

b hi = b dr �
1

n(n � 1)

X

i 6=j

n
Ai � b⇡(Xi )

o
Kh(Xi ,Xj)

n
Yj � bµ(Xj)

o

How should we compare these & similar estimators?

I one option: Holder smoothness classes (⇡ s bdd derivatives)
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Black-box / structure-agnostic viewpoint

Regardless of smoothness, the doubly robust estimator satisfies

| b dr �  | . 1p
n
+ kb⇡ � ⇡kkbµ� µk

and this error can be small under sparsity, bdd variation, etc.

This motivates black-box approach we often see in practice:

I throw kitchen sink at estimating (⇡, µ)

I put into plug-in/DR estimator, hoping rates “fast enough”

But this approach is sub-optimal in smoothness classes

I need more complicated higher-order estimators

I “structure-agnostic” guarantees not so beneficial here

Q: Can we formalize black-box model? What is optimal there?
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Minimax optimality

A natural way to characterize optimality is via the minimax rate

Rn = inf
b 
sup
P2P

P | b �  P |

i.e., the best possible (worst-case) error, across all estimators

Minimax rates have crucial implications, practical & theoretical

I gives benchmark for best possible performance

I precisely illustrates fundamental limits / statistical di�culty

Minimax rates are well-understood in many problems:

I smooth nonparametric regression: n�1/(2+ d
s )

I smooth functional estimation: max{n�1/(1+ d
4s ), 1/

p
n}

I density estimation w/measurement error: (log n)�s
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A new minimax framework

We propose a new black-box model for minimax analysis
I we only assume pilot propensity b⇡ and regression bµ estimators

are accurate in an L2(P) sense, nothing else

Our model is:

P(rn, sn) =
n
all distributions P : kb⇡ � ⇡k . rn, kbµ� µk . sn

o

(along with some boundedness conditions)

We do not assume (rn, sn) are known to the statistician
I so estimators in this model will be adaptive to (rn, sn)

Now the formal question is

inf
b 

sup
P2P(rn,sn)

P | b �  P | ⇣ ???
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A new minimax framework

Some notable distinctions vs. usual (e.g., smooth/sparse) models:

We impose structure implicitly via accuracy in pilot estimators

I assumption strength depends on the accuracy (rn, sn)

Following popular practice, we take conditional perspective

I half sample to estimate nuisances, rest to estimate functional

I we treat pilot estimates (b⇡, bµ) as fixed
I Bickel & Ritov (1988), Robins et al (2008), Chernuzhukov et

al (2018), Foster & Syrgkanis (2019), etc.

Local minimax flavor

I can think of this as a local minimax problem, localized around
(b⇡, bµ), rather than around true parameter (⇡, µ)
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The main result

Theorem
Let P(rn, sn) denote the model where

kb⇡ � ⇡k . rn and kbµ� µk . sn.

Then the minimax rate is

inf
b 

sup
P2P(rn,sn)

P | b �  P | ⇣ 1p
n
+ rn ⇥ sn

(see paper for similar sequence model / density functional results).

! Here doubly robust estimator can’t be meaningfully improved!
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Minimax lower bound

Intuition for minimax lower bounds:

I construct distributions so similar they’re indistinguishable

I but for which parameter is maximally separated

=) then no estimator can have error smaller than separation

For nonlinear functionals, mixture distributions are required

Three ingredients in deriving minimax lower bound:

1. pair of distributions (at least one mixture)

2. separation of parameter (ideally large)

3. distance between their n-fold products (ideally small)
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Construction

Intuition: perturbed nuisances need not be smooth

I can make them essentially impossible to estimate

I then only information comes from pilot estimates

Pair of distributions:

I under null P , take (⇡, µ) to be given estimates (b⇡, bµ)
I under alternative Q�, add k bumps w/random direction �,

and height approx. equal to rn and sn (for ⇡, µ, resp.)

Functional separation:

 (P) =

Z
b⇡bµ ,  (Q�) &  (P) + rnsn

Hellinger distance: H2 . n2

k

�
r
4
n + s

4
n

�
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Null P
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Alt. Q�
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Construction

Intuition: perturbed nuisances need not be smooth

I can make them essentially impossible to estimate

I then only information comes from pilot estimates

Pair of distributions:

I under null P , take (⇡, µ) to be given estimates (b⇡, bµ)
I under alternative Q�, add k bumps w/random direction �,

and height approx. equal to rn and sn (for ⇡, µ, resp.)

Functional separation:

 (P) =

Z
b⇡bµ ,  (Q�)�  (P) & rn ⇥ sn

Hellinger distance: H2 . n2

k

�
r
4
n + s

4
n

�
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Some implications

I There’s a strong sense in which popular DR/TMLE/DML
-style estimators are optimal, from black-box perspective

I even when nuisances estimated at slower than n
�1/4 rates

I rate benefits from higher-order estimators will necessarily
require more assumptions

I “doubly robust inference” methods, which yield root-n rates
as long as either nuisance is converging at n�1/4, are
necessarily using more assumptions (sparse glm, smoothness)
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Summary

Still a long way to go understanding optimality in causal inference

Our contributions here:

1. new black-box framework, giving complementary perspective

2. new structure-agnostic minimax rates for functional
estimation in sequence model, density/causal parameters

Lots of unanswered questions & future work:

I other functionals, classes of functionals; adaptivity;
other models; and more
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On arxiv now! ! arxiv.org/abs/2305.041167

Feel free to email with any questions:
edward@stat.cmu.edu

Thank you!
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